Abstract

We report on spectroscopic real-time detection of  13CH4 in ambient air. Our measurements were carried out by means of cavity leak-out absorption spectroscopy employing a tunable cw laser in the mid-infrared spectral region near λ=3 µm. A CO laser in combination with tunable microwave sideband generation was used as the light source. Using a 50-cm-long ringdown cell with R=99.98% mirrors, we achieved a detection limit of 290 parts in 1012 (ppt)  13CH4 in ambient air (integration time, 100 s). The corresponding noise-equivalent absorption coefficient was 5×10-9/cm.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. hitran96 database; www.hitran.com .
  2. P. J. Crutzen, Nature 350, 380 (1991).
    [CrossRef]
  3. P. Bergamaschi, M. Schupp, and G. W. Harris, Appl. Opt. 33, 7704 (1994).
    [CrossRef] [PubMed]
  4. K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
    [CrossRef]
  5. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
    [CrossRef]
  6. D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
    [CrossRef]
  7. K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent5,528,040 (November7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).
  8. M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
    [CrossRef]
  9. M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
    [CrossRef]
  10. M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
    [CrossRef]
  11. C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
    [CrossRef]

2000 (2)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

1999 (3)

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
[CrossRef]

1998 (1)

1995 (1)

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

1994 (1)

1991 (1)

P. J. Crutzen, Nature 350, 380 (1991).
[CrossRef]

Baillargeon, J. N.

Bergamaschi, P.

Bucher, C. R.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

Capasso, F.

Cho, A. Y.

Crutzen, P. J.

P. J. Crutzen, Nature 350, 380 (1991).
[CrossRef]

Curl, R. F.

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
[CrossRef]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Dlugokencky, E. J.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Fraser, G. T.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

Frech, B.

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
[CrossRef]

Gmachl, C.

Harris, G. W.

Hering, P.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Hollberg, L.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Hutchinson, A. L.

Kayser, T.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Kleine, D.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Kosterev, A. A.

Lancaster, D. G.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Lehmann, K.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent5,528,040 (November7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

Limpert, J.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Lotze, R.

Mürtz, M.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
[CrossRef]

Palm, P.

Petrov, K. P.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Plusquellic, D. F.

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

Richter, D.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Schupp, M.

Simon, U.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Sivco, D. L.

Stry, S.

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Tittel, F. K.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, Opt. Lett. 24, 1762 (1999).
[CrossRef]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Urban, W.

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

M. Mürtz, B. Frech, P. Palm, R. Lotze, and W. Urban, Opt. Lett. 23, 58 (1998).
[CrossRef]

Waltman, S.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

Weidner, R.

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Appl. Opt. (2)

P. Bergamaschi, M. Schupp, and G. W. Harris, Appl. Opt. 33, 7704 (1994).
[CrossRef] [PubMed]

C. R. Bucher, K. Lehmann, D. F. Plusquellic, and G. T. Fraser, Appl. Opt. 39, 3156 (2000).
[CrossRef]

Appl. Phys. B (2)

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, Appl. Phys. B 61, 553 (1995).
[CrossRef]

M. Mürtz, B. Frech, and W. Urban, Appl. Phys. B 68, 243 (1999).
[CrossRef]

Nature (1)

P. J. Crutzen, Nature 350, 380 (1991).
[CrossRef]

Opt. Commun. (1)

D. G. Lancaster, R. Weidner, D. Richter, F. K. Tittel, and J. Limpert, Opt. Commun. 175, 461 (2000).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

M. Mürtz, T. Kayser, D. Kleine, S. Stry, P. Hering, and W. Urban, Proc. SPIE 3758, 53 (1999).
[CrossRef]

Other (2)

K. Lehmann, “Ring-down cavity spectroscopy cell using continuous wave excitation for trace gas species detection,” U.S. patent5,528,040 (November7, 1994); D. Romanini, A. A. Kachanov, N. Sadeghi, and F. Stoeckel, Chem. Phys. Lett. 262, 105 (1996).

hitran96 database; www.hitran.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: RP’s Rochon polarizers; L, lenses, M’s, cavity mirror’s; EOM, electro-optic modulator; PD’s, photodiodes; PZT, piezoceramic transducer; Mono, monochromator; trig., trigger; sig., signal.

Fig. 2
Fig. 2

a, Experimental cavity leak-out signal versus time (single shot with exponential fit superimposed). The laser is turned of near t=11 µs. The decay time is 5.86±0.03 µs. b, Experimental cavity leak-out signal (100 averages with exponential fit superimposed). The decay time is 5.826±0.013 µs.

Fig. 3
Fig. 3

Real-time spectrum of  13CH4 in ambient air. We selected three transitions of the methane ν3 band: R3 A21, R3 F21 1, and R3 F11 1 (from left to right). The cell pressure is 50 mbars, and the temperature is 293 K. The observed fraction of  13CH4 is 21±0.6 ppb. The error bars indicate the 1σ uncertainty of the measurement. For comparison, the absorption given by the hitran96 database is shown by the solid curve.

Fig. 4
Fig. 4

Empty cavity decay time versus time. For an observation time of 100 s the relative 1σ uncertainty of the mean value is 1.1×10-3, corresponding to a noise-equivalent absorption of 5×10-9/cm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

kν=1c1τ-1τ0,

Metrics