Abstract

A new idea of using change in index of refraction to suppress gain variation in a saturated semiconductor optical amplifier (SOA) is presented. This kind of gain compensation has the advantage of high speed because it involves two phenomena that always accompany each other. This compensation can be achieved with a nonsymmetrical Mach–Zehnder interferometer structure. Calculated results show that with this structure the input and output power of the SOA can be extended to nearly 10 dB from the former small-signal limit when less than 1-dB gain variation is permitted. Numerical simulations with an advanced dynamic model of the SOA agree with the calculated results.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
    [CrossRef]
  2. K. Inoue, Electron. Lett. 34, 376 (1998).
    [CrossRef]
  3. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
    [CrossRef]
  4. R. J. Manning and D. A. O. Davies, Opt. Lett. 19, 889 (1994).
    [CrossRef] [PubMed]
  5. S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.
  6. L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
    [CrossRef]
  7. D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
    [CrossRef]
  8. G. P. Agrawal and N. A. Olsson, J. Lightwave Technol. 25, 2297 (1989).
  9. H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
    [CrossRef]
  10. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
    [CrossRef]

1999 (1)

H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
[CrossRef]

1998 (2)

D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
[CrossRef]

K. Inoue, Electron. Lett. 34, 376 (1998).
[CrossRef]

1995 (1)

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

1994 (1)

1993 (1)

J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
[CrossRef]

1992 (2)

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

1989 (1)

G. P. Agrawal and N. A. Olsson, J. Lightwave Technol. 25, 2297 (1989).

Agrawal, G. P.

G. P. Agrawal and N. A. Olsson, J. Lightwave Technol. 25, 2297 (1989).

Banerjee, S.

S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.

Binsma, J. J. M.

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

Coles, A. N.

J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
[CrossRef]

Constable, J. A.

J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
[CrossRef]

Cunningham, D. G.

J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
[CrossRef]

Danielsen, S. L.

D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
[CrossRef]

Davies, D. A. O.

Dongen, T. V.

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

Inoue, K.

K. Inoue, Electron. Lett. 34, 376 (1998).
[CrossRef]

Jansen, E. J.

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

Jeong, J.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
[CrossRef]

Joergenzen, C.

D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
[CrossRef]

Kantor, K.

S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.

Kim, Y.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
[CrossRef]

Lee, H.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
[CrossRef]

Manning, R. J.

Mikkelsen, B.

D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

Olsson, N. A.

G. P. Agrawal and N. A. Olsson, J. Lightwave Technol. 25, 2297 (1989).

Srivstava, A. K.

S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.

Stubkjaer, K. E.

D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

Sulhoff, J. W.

S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.

Sun, Y.

S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.

Thijs, P. J. A.

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

Tiemeijer, L. F.

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

van Helleputte, H. R. J. R.

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

White, I. H.

J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
[CrossRef]

Wolf, C.

S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.

Wolfson, D.

D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
[CrossRef]

Yoon, H.

H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
[CrossRef]

Electron. Lett. (2)

J. A. Constable, I. H. White, A. N. Coles, and D. G. Cunningham, Electron. Lett. 29, 2042 (1993).
[CrossRef]

K. Inoue, Electron. Lett. 34, 376 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Lee, H. Yoon, Y. Kim, and J. Jeong, IEEE J. Quantum Electron. 35, 1213 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. F. Tiemeijer, P. J. A. Thijs, T. V. Dongen, J. J. M. Binsma, E. J. Jansen, and H. R. J. R. van Helleputte, IEEE Photon. Technol. Lett. 7, 284 (1995).
[CrossRef]

D. Wolfson, S. L. Danielsen, C. Joergenzen, B. Mikkelsen, and K. E. Stubkjaer, IEEE Photon. Technol. Lett. 10, 1241 (1998).
[CrossRef]

J. Lightwave Technol. (3)

G. P. Agrawal and N. A. Olsson, J. Lightwave Technol. 25, 2297 (1989).

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, J. Lightwave Technol. 10, 1056 (1992).
[CrossRef]

Opt. Lett. (1)

Other (1)

S. Banerjee, A. K. Srivstava, Y. Sun, J. W. Sulhoff, K. Kantor, and C. Wolf, in Digest of Optical Fiber Communication Conference, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), paper WM32-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Structure of the proposed device.

Fig. 2
Fig. 2

Gain versus input power Pin of (solid curve) the proposed interferometric structure [Fig. 1(a)] and (dashed curve) an ordinary SOA with the same small-signal gain. Pin is normalized by the saturated power Psat of the SOA.

Fig. 3
Fig. 3

Gain versus output power Pout of (dotted curve) an ordinary SOA and the interferometric structure [Fig. 1(b)] when (solid curve) α=10, G1=55 and (dashed curve) α=5, G1=18.4. The parameters are chosen so that they have the same small-signal gain. Pout is normalized by the saturated power Psat of the SOA.

Fig. 4
Fig. 4

Simulated performance of the device shown in Fig. 1(a). (a) Eye diagram of the output signal of the SOA at the top arm of the structure, (b) eye diagram of the output signal at the output port of the interferometric structure.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ/z=-12αg,
G=exp0Lgzdz=exp-2Δϕ/α.
Gt0=G0-12/2.
Gt1=G1+12/2,
G0=41-exp-π/α-2

Metrics