Abstract

We introduce a new matched filter method that yields correlation peaks that are invariant with changes in the illumination of any targets. A scene containing objects at unknown locations is first subjected to a logarithmic transformation that changes the multiplicative constant to an additive background, which is then discriminated against by means of a composite filter containing a cameo of the true target and a term with which to discriminate against other false targets. Experimental results are shown.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8, p. 248.
  2. F. M. Dickey and L. A. Romero, Opt. Lett. 16, 1186 (1991).
    [CrossRef] [PubMed]
  3. S. Zhang and M. Karim, Opt. Eng. 39, 1184 (2000).
    [CrossRef]
  4. T. J. Stockham, Proc. IEEE 60, 828 (1972).
    [CrossRef]
  5. H. Arsenault, Y. Sheng, and J. Bulabois, Opt. Commun. 63, 15 (1987).
    [CrossRef]
  6. M. A. Karim and H.-K. Liu, Opt. Lett. 6, 207 (1981).
    [CrossRef] [PubMed]
  7. M. A. Karim and H.-K. Liu, Opt. Lett. 7, 371 (1982).
    [CrossRef] [PubMed]

2000 (1)

S. Zhang and M. Karim, Opt. Eng. 39, 1184 (2000).
[CrossRef]

1991 (1)

1987 (1)

H. Arsenault, Y. Sheng, and J. Bulabois, Opt. Commun. 63, 15 (1987).
[CrossRef]

1982 (1)

1981 (1)

1972 (1)

T. J. Stockham, Proc. IEEE 60, 828 (1972).
[CrossRef]

Arsenault, H.

H. Arsenault, Y. Sheng, and J. Bulabois, Opt. Commun. 63, 15 (1987).
[CrossRef]

Bulabois, J.

H. Arsenault, Y. Sheng, and J. Bulabois, Opt. Commun. 63, 15 (1987).
[CrossRef]

Dickey, F. M.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8, p. 248.

Karim, M.

S. Zhang and M. Karim, Opt. Eng. 39, 1184 (2000).
[CrossRef]

Karim, M. A.

Liu, H.-K.

Romero, L. A.

Sheng, Y.

H. Arsenault, Y. Sheng, and J. Bulabois, Opt. Commun. 63, 15 (1987).
[CrossRef]

Stockham, T. J.

T. J. Stockham, Proc. IEEE 60, 828 (1972).
[CrossRef]

Zhang, S.

S. Zhang and M. Karim, Opt. Eng. 39, 1184 (2000).
[CrossRef]

Opt. Commun. (1)

H. Arsenault, Y. Sheng, and J. Bulabois, Opt. Commun. 63, 15 (1987).
[CrossRef]

Opt. Eng. (1)

S. Zhang and M. Karim, Opt. Eng. 39, 1184 (2000).
[CrossRef]

Opt. Lett. (3)

Proc. IEEE (1)

T. J. Stockham, Proc. IEEE 60, 828 (1972).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), Chap. 8, p. 248.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

True (left) and false (right) targets and (bottom) a cameo of the true target used in the experiments.

Fig. 2
Fig. 2

Scene containing six tank targets, three true and three false, corresponding to three different illuminations. The top three targets are indicated by squares, and the three false targets are indicated by diamonds.

Fig. 3
Fig. 3

Correlation results obtained with the homomorphic cameo filter. The correlation peaks are all equal, despite differences of up to a factor of 3 in illumination.

Tables (1)

Tables Icon

Table 1 Correlation Peak Intensities for the Cluttered Image

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

fx,y=bfx,y,
fLx,y=logbfx,y=logb+logfx,y.
hx=αfpx,y+βgpx,y+γcx,y,
fpx,y=logfx,y,  gpx,y=loggx,y,
hx,yfpx,y 0,0=1,  hx,ygpx,y0,0=0,  hx,ycx,y|0,0=0.
αRfpfp0,0+βRfpgp0,0+γRfpc0,0=1,  αRfpgp0,0+βRgpgp0,0+γRgpc0,0=0,  αRfpc0,0+βRgpc0,0+γRcc0,0=0.

Metrics