Abstract

A method that uses a Zeeman laser in conjunction with a Glan–Thompson analyzer to image an object in a turbid medium is proposed. A heterodyne signal is generated only when the scattering photons are partially polarized, and the spatial coherence is not seriously degraded after the signal propagates in the turbid medium. A system combining polarization discrimination with optical coherence detection to image the object in a scattering medium is successfully demonstrated. The medium is a solution of polystyrene microspheres measuring 1.072 µm in diameter suspended in distilled water contained in a 10-mm-thick quartz cuvette. The advantages of this optical system, including better selectivity of the weak partially polarized scattering photons and better imaging ability in higher-scattering media, are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Toida, M. Kondo, T. Ichimura, and H. Inaba, Appl. Phys. B 52, 391 (1991).
    [CrossRef]
  2. O. Emile, F. Bretenaker, and A. Le Floch, Opt. Lett. 21, 1706 (1996).
    [CrossRef] [PubMed]
  3. S. P. Morgan, M. P. Khong, and M. G. Somekh, Appl. Opt. 36, 1560 (1997).
    [CrossRef] [PubMed]
  4. C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
    [CrossRef]
  5. S. G. Demos and R. R. Alfano, Opt. Lett. 21, 161 (1996).
    [CrossRef] [PubMed]
  6. G. Jarry, E. Steimer, V. Damaschini, M. Epifanie, M. Jurczak, and R. Kaiser, Appl. Opt. 37, 7357 (1998).
    [CrossRef]
  7. D. Bicout, C. Brosseau, A. S. Marinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
    [CrossRef]
  8. L. C. Peng, C. Y. Han, C. W. Lyu, and C. Chou, presented at the Optical Society of America Annual Meeting, Santa Clara, Calif., September 26–30, 1999.
  9. V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, Jr., Opt. Lett. 24, 1044 (1999).
    [CrossRef]
  10. V. Sankaran, Medical Technology Program, Lawrence Livermore National Laboratory, Livermore, Calif. 94551 (personal communication, August 1, 2000) confirmed that the scattering coefficient ms of a 1.072-mm polystyrene microsphere solution of different volume concentrations C (vol. %), which is placed in a 1-cm path-length glass cuvette and diluted with distilled water, is ms=389.93C(cm-1).
  11. J. B. Fishkin, P. T. C. So, A. E. Cerussi, S. Fantini, M. A. Franceschini, and E. Gratton, Appl. Opt. 34, 1143 (1995).
    [CrossRef] [PubMed]

1999

V. Sankaran, M. J. Everett, D. J. Maitland, and J. T. Walsh, Jr., Opt. Lett. 24, 1044 (1999).
[CrossRef]

C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
[CrossRef]

1998

1997

1996

1995

1994

D. Bicout, C. Brosseau, A. S. Marinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

1991

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

Alfano, R. R.

An, K.

C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
[CrossRef]

Bicout, D.

D. Bicout, C. Brosseau, A. S. Marinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Bretenaker, F.

Brosseau, C.

D. Bicout, C. Brosseau, A. S. Marinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Cerussi, A. E.

Chou, C.

L. C. Peng, C. Y. Han, C. W. Lyu, and C. Chou, presented at the Optical Society of America Annual Meeting, Santa Clara, Calif., September 26–30, 1999.

Damaschini, V.

Dasari, R. R.

C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
[CrossRef]

Demos, S. G.

Emile, O.

Epifanie, M.

Everett, M. J.

Fantini, S.

Feld, M. S.

C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
[CrossRef]

Fishkin, J. B.

Franceschini, M. A.

Gratton, E.

Han, C. Y.

L. C. Peng, C. Y. Han, C. W. Lyu, and C. Chou, presented at the Optical Society of America Annual Meeting, Santa Clara, Calif., September 26–30, 1999.

Ichimura, T.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

Inaba, H.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

Jarry, G.

Jurczak, M.

Kaiser, R.

Khong, M. P.

Kondo, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

Le Floch, A.

Lyu, C. W.

L. C. Peng, C. Y. Han, C. W. Lyu, and C. Chou, presented at the Optical Society of America Annual Meeting, Santa Clara, Calif., September 26–30, 1999.

Maitland, D. J.

Marinez, A. S.

D. Bicout, C. Brosseau, A. S. Marinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Morgan, S. P.

Peng, L. C.

L. C. Peng, C. Y. Han, C. W. Lyu, and C. Chou, presented at the Optical Society of America Annual Meeting, Santa Clara, Calif., September 26–30, 1999.

Perelmon, L. T.

C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
[CrossRef]

Sankaran, V.

Schmitt, J. M.

D. Bicout, C. Brosseau, A. S. Marinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

So, P. T. C.

Somekh, M. G.

Steimer, E.

Toida, M.

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

Walsh, Jr., J. T.

Yang, C.

C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. B

M. Toida, M. Kondo, T. Ichimura, and H. Inaba, Appl. Phys. B 52, 391 (1991).
[CrossRef]

J. Opt. Soc. Am. A

C. Yang, K. An, L. T. Perelmon, R. R. Dasari, and M. S. Feld, J. Opt. Soc. Am. A 16, 866 (1999).
[CrossRef]

Opt. Lett.

Phys. Rev. E

D. Bicout, C. Brosseau, A. S. Marinez, and J. M. Schmitt, Phys. Rev. E 49, 1767 (1994).
[CrossRef]

Other

L. C. Peng, C. Y. Han, C. W. Lyu, and C. Chou, presented at the Optical Society of America Annual Meeting, Santa Clara, Calif., September 26–30, 1999.

V. Sankaran, Medical Technology Program, Lawrence Livermore National Laboratory, Livermore, Calif. 94551 (personal communication, August 1, 2000) confirmed that the scattering coefficient ms of a 1.072-mm polystyrene microsphere solution of different volume concentrations C (vol. %), which is placed in a 1-cm path-length glass cuvette and diluted with distilled water, is ms=389.93C(cm-1).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

p- and s-polarized waves transmitted through the analyzer.

Fig. 2
Fig. 2

Experimental setup, in which a Zeeman laser (ZL), a quartz cuvette (sample), two Glan–Thompson analyzers As,Ar, three lenses, two apertures A1,A2, two photomultiplier tubes (PMT’s), a linear amplifier (LA), a lock-in amplifier (LIA), a bandpass filter (BPF), a beam splitter (BS), and a personal computer (PC) are used.

Fig. 3
Fig. 3

On-focus scanned 1D bar pattern images behind a scattering medium contained in a 10-mm-thick cuvette. The medium, which has a 2.5% vol. fraction concentration, is a 1.072µm polystyrene microsphere suspension solution diluted in double-distilled water. Scans (a) with and (b) without a Glan–Thompson analyzer are shown.

Fig. 4
Fig. 4

On-focus two-dimensional (2D) scanned image of the letters YM. The medium is the same as in Fig. 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

IhΔωt=ApAs sin 2θ cosΔωt,

Metrics