Abstract

The lasing intensity distribution made inside a circular resonator formed by a dye-doped pendant drop was measured by addition of polymer particles to the dye solution to enhance the elastic-scattered light of the lasing inside the pendant drop. A theory that connects wave and ray pictures in dealing with the cavity resonance is used to calculate the internal intensity distribution. The experimental and theoretical results are in good agreement for sufficiently large densities of scattering particles, such that the cavity mode efficiency ϕ is 1 for all resonant modes.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Roll, T. Kaiser, S. Lange, and G. Schweiger, J. Opt. Soc. Am. B 15, 2879 (1998), and references therein.
    [CrossRef]
  2. D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, Appl. Opt. 26, 1348 (1987).
    [CrossRef] [PubMed]
  3. D. Q. Chowdhury, P. W. Barber, and S. C. Hill, Appl. Opt. 31, 3518 (1992), and references therein.
    [CrossRef] [PubMed]
  4. A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Technol. MTT-23, 134 (1975); H. M. Nussenzveig, Mol. Phys. 23, 175 (1989).
    [CrossRef]
  5. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
    [CrossRef] [PubMed]
  6. X. Y. Pu and W. K. Lee, Opt. Lett. 25, 466 (2000).
    [CrossRef]
  7. S. C. Hill and R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
    [CrossRef]
  8. A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
    [CrossRef] [PubMed]
  9. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.
  10. Itr≠0 for r>a is likely due to electrons spilling between CCD pixels. It′r=0 for r<0.69a is required by ka<n<mka. For the high-gain lasing medium used, modes of n<ka also provide optical feedback to the lasing action, which causes Itr≠0 for r<0.69a.
  11. P. Chýlek, H. B. Lin, J. D. Eversole, and A. J. Campillo, Opt. Lett. 16, 1723 (1991); H. B. Lin, A. L. Huston, J. D. Eversole, A. J. Campillo, and P. Chýlek, Opt. Lett. 17, 970 (1992).
    [CrossRef] [PubMed]

2000 (1)

1998 (1)

G. Roll, T. Kaiser, S. Lange, and G. Schweiger, J. Opt. Soc. Am. B 15, 2879 (1998), and references therein.
[CrossRef]

1995 (1)

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
[CrossRef] [PubMed]

1992 (1)

1991 (1)

1987 (1)

1986 (2)

S. C. Hill and R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
[CrossRef]

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

1975 (1)

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Technol. MTT-23, 134 (1975); H. M. Nussenzveig, Mol. Phys. 23, 175 (1989).
[CrossRef]

Barber, P. W.

Benincasa, D. S.

Benner, R. E.

Campillo, A. J.

Chang, R. K.

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
[CrossRef] [PubMed]

D. S. Benincasa, P. W. Barber, J. Z. Zhang, W. F. Hsieh, and R. K. Chang, Appl. Opt. 26, 1348 (1987).
[CrossRef] [PubMed]

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Chen, G.

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
[CrossRef] [PubMed]

Chowdhury, D. Q.

Chýlek, P.

Eversole, J. D.

Hill, S. C.

D. Q. Chowdhury, P. W. Barber, and S. C. Hill, Appl. Opt. 31, 3518 (1992), and references therein.
[CrossRef] [PubMed]

S. C. Hill and R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
[CrossRef]

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

Hsieh, W. F.

Kaiser, T.

G. Roll, T. Kaiser, S. Lange, and G. Schweiger, J. Opt. Soc. Am. B 15, 2879 (1998), and references therein.
[CrossRef]

Lange, S.

G. Roll, T. Kaiser, S. Lange, and G. Schweiger, J. Opt. Soc. Am. B 15, 2879 (1998), and references therein.
[CrossRef]

Lee, W. K.

Lin, H. B.

Love, J. D.

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Technol. MTT-23, 134 (1975); H. M. Nussenzveig, Mol. Phys. 23, 175 (1989).
[CrossRef]

Mekis, A.

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
[CrossRef] [PubMed]

Nöckel, J. U.

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
[CrossRef] [PubMed]

Pu, X. Y.

Qian, S. X.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Roll, G.

G. Roll, T. Kaiser, S. Lange, and G. Schweiger, J. Opt. Soc. Am. B 15, 2879 (1998), and references therein.
[CrossRef]

Schweiger, G.

G. Roll, T. Kaiser, S. Lange, and G. Schweiger, J. Opt. Soc. Am. B 15, 2879 (1998), and references therein.
[CrossRef]

Snow, J. B.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Snyder, A. W.

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Technol. MTT-23, 134 (1975); H. M. Nussenzveig, Mol. Phys. 23, 175 (1989).
[CrossRef]

Stone, A. D.

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
[CrossRef] [PubMed]

Tzeng, H. M.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Zhang, J. Z.

Appl. Opt. (2)

IEEE Trans. Microwave Theory Technol. (1)

A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Technol. MTT-23, 134 (1975); H. M. Nussenzveig, Mol. Phys. 23, 175 (1989).
[CrossRef]

J. Opt. Soc. Am. B (2)

S. C. Hill and R. E. Benner, J. Opt. Soc. Am. B 3, 1509 (1986).
[CrossRef]

G. Roll, T. Kaiser, S. Lange, and G. Schweiger, J. Opt. Soc. Am. B 15, 2879 (1998), and references therein.
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (1)

A. Mekis, J. U. Nöckel, G. Chen, A. D. Stone, and R. K. Chang, Phys. Rev. Lett. 75, 2682 (1995); J. U. Nöckel and A. D. Stone, in Optical Processes in Microcavities, R. K. Chang and A. J. Campillo, eds. (World Scientific, Singapore, 1996).
[CrossRef] [PubMed]

Science (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, Science 231, 486 (1986).
[CrossRef] [PubMed]

Other (2)

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990), Chap. 2.

Itr≠0 for r>a is likely due to electrons spilling between CCD pixels. It′r=0 for r<0.69a is required by ka<n<mka. For the high-gain lasing medium used, modes of n<ka also provide optical feedback to the lasing action, which causes Itr≠0 for r<0.69a.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Images of a lasing PD viewed along (a) the negative y axis and (b) the positive z axis filtered by F600. (c) Lasing (thin curve) and fluorescence spectra from the rim and the left-hand portion of the PD. (d) Experimental setup.

Fig. 2
Fig. 2

Images of a lasing PD with scattering particles viewed along the positive z axis: (a) lasing image filtered by F600, with ρ=ρ1=1.0×108/cm3; (b) fluorescent image filtered by F580 for the same PD as in (a). (c) and (d) are the same as (a) and (b), respectively, except that ρ=ρ2=2.2×109/cm3.

Fig. 3
Fig. 3

Normalized intensity distribution curves: dashed curve, measured for ρ1; thin curve, measured for ρ2; thick curve, calculated. Inset, intensity-correction curve.

Fig. 4
Fig. 4

Iχr curves for different modes. The diamonds, squares, triangles, crosses, and circles represent n values of 13,614, 15,823, 17,552, 18,748, and 19,133, respectively. Thick curve, Itr. Inset, caustic of radius a sin χ formed by rays that have an incident angle χ in a 2D circular cavity.

Metrics