Abstract

A fiber-ribbon-based coupling method is presented as a practical way to enhance light sensitivity in spectroscopic and similar systems employing a multialkali photomultiplier tube as a detector. The sensitivity enhancement is achieved by an increase in absorption in the photocathode through multiple total internal reflection in the photomultiplier entrance window. Improvements by factors of 2 (blue-green) to more than 10 (near infrared) have been measured. Implications for spectroscopic applications are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. D. Gunter, E. E. Erickson, and G. R. Grant, Appl. Opt. 4, 513 (1965).
    [CrossRef]
  2. T. Hirschfeld, Appl. Opt. 7, 443 (1968).
    [CrossRef] [PubMed]
  3. S. Hallensleben, S. W. Harmer, and P. D. Townsend, J. Phys. D. 32, 623 (1999).
    [CrossRef]
  4. S. W. Harmer, S. Hallensleben, and P. D. Townsend, Nucl. Instrum. Methods Phys. Res. B 166–167, 798 (2000).
    [CrossRef]
  5. W. C. Livingston, Appl. Opt. 5, 1335 (1966).
    [CrossRef] [PubMed]
  6. W. D. Gunter, G. R. Grant, and S. A. Shaw, Appl. Opt. 9, 251 (1970).
    [CrossRef] [PubMed]
  7. Fiberoptic Systems, Inc., Suite 1, 2250 Union Place, Simi Valley, Calif. 93065.
  8. EMI is now trading as Electron Tubes, Ltd., Bury Street, Ruislip, London HA4 7TA.

2000 (1)

S. W. Harmer, S. Hallensleben, and P. D. Townsend, Nucl. Instrum. Methods Phys. Res. B 166–167, 798 (2000).
[CrossRef]

1999 (1)

S. Hallensleben, S. W. Harmer, and P. D. Townsend, J. Phys. D. 32, 623 (1999).
[CrossRef]

1970 (1)

1968 (1)

1966 (1)

1965 (1)

Erickson, E. E.

Grant, G. R.

Gunter, W. D.

Hallensleben, S.

S. W. Harmer, S. Hallensleben, and P. D. Townsend, Nucl. Instrum. Methods Phys. Res. B 166–167, 798 (2000).
[CrossRef]

S. Hallensleben, S. W. Harmer, and P. D. Townsend, J. Phys. D. 32, 623 (1999).
[CrossRef]

Harmer, S. W.

S. W. Harmer, S. Hallensleben, and P. D. Townsend, Nucl. Instrum. Methods Phys. Res. B 166–167, 798 (2000).
[CrossRef]

S. Hallensleben, S. W. Harmer, and P. D. Townsend, J. Phys. D. 32, 623 (1999).
[CrossRef]

Hirschfeld, T.

Livingston, W. C.

Shaw, S. A.

Townsend, P. D.

S. W. Harmer, S. Hallensleben, and P. D. Townsend, Nucl. Instrum. Methods Phys. Res. B 166–167, 798 (2000).
[CrossRef]

S. Hallensleben, S. W. Harmer, and P. D. Townsend, J. Phys. D. 32, 623 (1999).
[CrossRef]

Appl. Opt. (4)

J. Phys. D. (1)

S. Hallensleben, S. W. Harmer, and P. D. Townsend, J. Phys. D. 32, 623 (1999).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

S. W. Harmer, S. Hallensleben, and P. D. Townsend, Nucl. Instrum. Methods Phys. Res. B 166–167, 798 (2000).
[CrossRef]

Other (2)

Fiberoptic Systems, Inc., Suite 1, 2250 Union Place, Simi Valley, Calif. 93065.

EMI is now trading as Electron Tubes, Ltd., Bury Street, Ruislip, London HA4 7TA.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fiber-coupling setup used to transport light from a spectrometer slit directly into the window of a photomultiplier tube mounted in a cooled housing. Note that the normal double-glazed entrance window to the housing can be replaced with a piece of insulating material such as styrofoam.

Fig. 2
Fig. 2

Comparison of tungsten-lamp spectrum as recorded conventionally and with fiber coupling.

Fig. 3
Fig. 3

Sensitivity enhancement through fiber coupling. The improvement factor is calculated as the ratio of fiber-coupling-enhanced output singal to output signal in a conventional setup. Triangles, data points; solid curve, guide for the eye.

Metrics