Abstract

We demonstrate the use of a 30-period dielectric stack structure as a highly dispersive device to spatially separate two beams with a 4-nm wavelength difference by more than their beam width. Unlike previous devices, our structure is simple to fabricate and relatively compact. We discuss possible applications of our device within wavelength-division multiplexing systems.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Himeno, K. Kato, and T. Miya, J. Sel. Top. Quantum Electron. 4, 913 (1998).
    [CrossRef]
  2. R. Zengerle, J. Mod. Opt. 34, 1589 (1987).
    [CrossRef]
  3. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
    [CrossRef]
  4. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, Opt. Lett. 21, 1771 (1996).
    [CrossRef] [PubMed]
  5. B. Gralak, S. Enoch, and G. Tayeb, J. Opt. Soc. Am. A 17, 1012 (2000).
    [CrossRef]
  6. H. A. Macleod, Thin-Film Optical Filters (American Elsevier, New York, 1969).
  7. P. Yeh, A. Yariv, and C. Hong, J. Opt. Soc. Am. 67, 423 (1977).

2000

1999

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

1998

A. Himeno, K. Kato, and T. Miya, J. Sel. Top. Quantum Electron. 4, 913 (1998).
[CrossRef]

1996

1987

R. Zengerle, J. Mod. Opt. 34, 1589 (1987).
[CrossRef]

1977

Enoch, S.

Gralak, B.

Hietala, V. M.

Himeno, A.

A. Himeno, K. Kato, and T. Miya, J. Sel. Top. Quantum Electron. 4, 913 (1998).
[CrossRef]

Hong, C.

Jones, E. D.

Kato, K.

A. Himeno, K. Kato, and T. Miya, J. Sel. Top. Quantum Electron. 4, 913 (1998).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

Lin, S. Y.

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (American Elsevier, New York, 1969).

Miya, T.

A. Himeno, K. Kato, and T. Miya, J. Sel. Top. Quantum Electron. 4, 913 (1998).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

Tayeb, G.

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

Wang, L.

Yariv, A.

Yeh, P.

Zengerle, R.

R. Zengerle, J. Mod. Opt. 34, 1589 (1987).
[CrossRef]

Appl. Phys. Lett.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Appl. Phys. Lett. 74, 1370 (1999).
[CrossRef]

J. Mod. Opt.

R. Zengerle, J. Mod. Opt. 34, 1589 (1987).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Sel. Top. Quantum Electron.

A. Himeno, K. Kato, and T. Miya, J. Sel. Top. Quantum Electron. 4, 913 (1998).
[CrossRef]

Opt. Lett.

Other

H. A. Macleod, Thin-Film Optical Filters (American Elsevier, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the device (not to scale). Only two periods are indicated. The beam paths of two different wavelengths are shown, including exiting beams resulting from 0, 2, and 4 bounces within the structure (beam1, beam2, and beam3, respectively). Polarization is perpendicular to the plane of the page.

Fig. 2
Fig. 2

Wave-vector diagram for two wavelengths near the band edge. Smaller arrows, direction of phase velocity; larger, thicker arrows, directions of group velocity.

Fig. 3
Fig. 3

Relative position of beam1 versus wavelength near the band edge for an incident angle in air of 30°. Filled circles, experimental data; solid curve, theoretical model for comparison. As the “zero” of position is arbitrary, the first data point is chosen to coincide with the theoretical curve.

Fig. 4
Fig. 4

Relative beam position versus wavelength near the band edge for beams with increasing numbers of reflections within the structure.

Fig. 5
Fig. 5

Overlapped intensity versus position traces of two resolved beams. The left beam is at a wavelength of 909.2 nm, and the right beam is at 913.2 nm. The physical separation of the two beams is 12.3 µm, and the two 1/e2 beam widths are 10.4 and 10.9 µm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

cosKΛ=cosk1acosk2b-½γ sink1asink2b,

Metrics