Abstract

We have achieved effective third-harmonic generation (THG) by cascading second-harmonic and sum-frequency generation in a single cerium-doped KTiOPO4 crystal by using femtosecond laser pulses at 1.32 µm. A conversion efficiency of 0.17% was achieved with an average pump power of 35 mW. Furthermore, a unique quadratic power dependence for this type of THG was confirmed. We developed a theory and obtained an analytical solution for the THG. The solution exactly describes the measured characteristics of the THG.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
    [CrossRef]
  2. P. S. Banks, M. D. Feit, and M. D. Perry, Opt. Lett. 24, 4 (1999).
    [CrossRef]
  3. I. V. Tomov, B. Van Wonterghem, and P. M. Rentzepis, Appl. Opt. 31, 4172 (1992).
    [CrossRef] [PubMed]
  4. H. Kobayashi, H. Iwamura, and K. Kubodera, J. Appl. Phys. 65, 5202 (1989).
    [CrossRef]
  5. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, Opt. Lett. 22, 1211 (1997).
    [CrossRef] [PubMed]
  6. X. Gu, M. Makarov, Y. J. Ding, J. B. Khurgin, and W. P. Risk, Opt. Lett. 24, 127 (1999).
    [CrossRef]
  7. P. F. Bordui, R. Blachman, and R. G. Norwood, Appl. Phys. Lett. 61, 1369 (1992).
    [CrossRef]
  8. V. G. Dmitriev, G. C. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1991).
    [CrossRef]
  9. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
    [CrossRef]
  10. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  11. J. D. Bierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
    [CrossRef]

1999 (2)

1997 (1)

1992 (2)

I. V. Tomov, B. Van Wonterghem, and P. M. Rentzepis, Appl. Opt. 31, 4172 (1992).
[CrossRef] [PubMed]

P. F. Bordui, R. Blachman, and R. G. Norwood, Appl. Phys. Lett. 61, 1369 (1992).
[CrossRef]

1989 (2)

J. D. Bierlein and H. Vanherzeele, J. Opt. Soc. Am. B 6, 622 (1989).
[CrossRef]

H. Kobayashi, H. Iwamura, and K. Kubodera, J. Appl. Phys. 65, 5202 (1989).
[CrossRef]

1988 (1)

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Banks, P. S.

Bierlein, J. D.

Blachman, R.

P. F. Bordui, R. Blachman, and R. G. Norwood, Appl. Phys. Lett. 61, 1369 (1992).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Bordui, P. F.

P. F. Bordui, R. Blachman, and R. G. Norwood, Appl. Phys. Lett. 61, 1369 (1992).
[CrossRef]

Bosenberg, W. R.

Ding, Y. J.

Dmitriev, V. G.

V. G. Dmitriev, G. C. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1991).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Feit, M. D.

Gu, X.

Gurzadyan, G. C.

V. G. Dmitriev, G. C. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1991).
[CrossRef]

Hollberg, L.

Iwamura, H.

H. Kobayashi, H. Iwamura, and K. Kubodera, J. Appl. Phys. 65, 5202 (1989).
[CrossRef]

Khurgin, J. B.

Kobayashi, H.

H. Kobayashi, H. Iwamura, and K. Kubodera, J. Appl. Phys. 65, 5202 (1989).
[CrossRef]

Kubodera, K.

H. Kobayashi, H. Iwamura, and K. Kubodera, J. Appl. Phys. 65, 5202 (1989).
[CrossRef]

Levenson, M. D.

Makarov, M.

Nikogosyan, D. N.

V. G. Dmitriev, G. C. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1991).
[CrossRef]

Norwood, R. G.

P. F. Bordui, R. Blachman, and R. G. Norwood, Appl. Phys. Lett. 61, 1369 (1992).
[CrossRef]

Penzkofer, A.

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

Perry, M. D.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Pfister, O.

Qiu, P.

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

Rentzepis, P. M.

Risk, W. P.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Tomov, I. V.

Van Baak, D. A.

Van Wonterghem, B.

Vanherzeele, H.

Wells, J. S.

Zink, L.

Appl. Opt. (1)

Appl. Phys. B (1)

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

P. F. Bordui, R. Blachman, and R. G. Norwood, Appl. Phys. Lett. 61, 1369 (1992).
[CrossRef]

J. Appl. Phys. (1)

H. Kobayashi, H. Iwamura, and K. Kubodera, J. Appl. Phys. 65, 5202 (1989).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962).
[CrossRef]

Other (2)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

V. G. Dmitriev, G. C. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, New York, 1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

TH and SH powers plotted as a function of pump wavelength at a pump power of 25 mW. Filled and open circles, THG and SHG, respectively.

Fig. 2
Fig. 2

TH power measured as a function of pump polarization angle α, where α is the angle between the pump polarization and the z axis of the crystal.

Fig. 3
Fig. 3

Power dependence of TH and SH waves on pump power. Filled and open circles, THG and SHG, respectively. Solid curves, the results of least-squares fitting of our data; they both exhibit quadratic power dependence.

Fig. 4
Fig. 4

SH and TH intensities versus interaction length. Short- and long-dashed curves, the SH wave without and with SFG, respectively. Solid curve, the TH wave.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2z=ia1*3+ia11* expiΔkz, 3z=ib12,
I2=32π3ω2I12n12n2c3Δk2χeff222×4 sin2Δkz2cosκz+1-cosκz2+2κΔk×sinκzsinΔkz+κ2Δk2sin2κz, I3=48π3ω2I12n12n2c3Δk2χeff22χeff32×sin2κz+κ2Δk2cosΔkz-cosκz2,
I2=32π3ω2I12n12n2c3Δk2χeff222×4 sin2Δkz/2cosκz+1-cosκz2, I3=48π3ω2I12n12n2c3Δk2χeff22χeff32 sin2κz.

Metrics