Abstract

Pulse-train multiplication based on the temporal Talbot effect in a linearly chirped fiber Bragg grating has been experimentally demonstrated. A 40-GHz repetition-rate, nearly transform-limited 10-ps duration optical pulse train at 1.533 µm has been obtained from a 2.5-GHz mode-locked Er–Yb:glass laser by use of a 100-cm-long linearly chirped apodized fiber grating.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takada and H. Miyazawa, Electron. Lett. 26, 216 (1990).
    [CrossRef]
  2. E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).
  3. N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
    [CrossRef]
  4. K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998); Electron. Lett. 34, 1 (1998).
    [CrossRef]
  5. I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 34, 792 (1998).
    [CrossRef]
  6. J. Azaña and M. A. Muriel, Opt. Lett. 24, 1672 (1999).
    [CrossRef]
  7. K. Patorski, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, p. 1; M. V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).
    [CrossRef]
  8. K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997); M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
    [CrossRef]
  9. P. Petropoulos, M. Ibsen, D. J. Richardson, and M. N. Zervas, Opt. Lett. 25, 521 (2000).
    [CrossRef]
  10. S. Longhi, P. Laporta, S. Taccheo, and O. Svelto, Opt. Lett. 19, 1986 (1994); S. Longhi, S. Taccheo, P. Laporta, and C. Svelto, Electron. Lett. 31, 368 (1995).
    [CrossRef]
  11. W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, Opt. Lett. 20, 2051 (1995); A. Asseh, H. Storoy, B. E. Sahlgren, S. Sandgan, and R. A. H. Stubbe, J. Lightwave Technol. 15, 1419 (1997).
    [CrossRef] [PubMed]
  12. We note that the positive time delay in the autocorrelation is slightly larger than the negative one, which results in the appearance of one additional pulse on the positive side. The leading and trailing edges of the pulses at the two extremes of the autocorrelation trace are hacked owing to the finite extension of rotating mirrors.

2000 (1)

1999 (1)

1998 (2)

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998); Electron. Lett. 34, 1 (1998).
[CrossRef]

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 34, 792 (1998).
[CrossRef]

1997 (1)

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997); M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

1995 (1)

1994 (2)

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

S. Longhi, P. Laporta, S. Taccheo, and O. Svelto, Opt. Lett. 19, 1986 (1994); S. Longhi, S. Taccheo, P. Laporta, and C. Svelto, Electron. Lett. 31, 368 (1995).
[CrossRef]

1993 (1)

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
[CrossRef]

1990 (1)

K. Takada and H. Miyazawa, Electron. Lett. 26, 216 (1990).
[CrossRef]

Abedin, K. S.

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998); Electron. Lett. 34, 1 (1998).
[CrossRef]

Ahmed, Z.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
[CrossRef]

Azaña, J.

Barcelos, S.

Bondurant, R. S.

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

Chinn, S. R.

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

Cole, M. J.

Hall, K.

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

Hill, K. O.

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997); M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

Hyodo, M.

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998); Electron. Lett. 34, 1 (1998).
[CrossRef]

Ibsen, M.

Kawanishi, S.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 34, 792 (1998).
[CrossRef]

Laming, R. I.

Laporta, P.

S. Longhi, P. Laporta, S. Taccheo, and O. Svelto, Opt. Lett. 19, 1986 (1994); S. Longhi, S. Taccheo, P. Laporta, and C. Svelto, Electron. Lett. 31, 368 (1995).
[CrossRef]

Loh, W. H.

Longhi, S.

S. Longhi, P. Laporta, S. Taccheo, and O. Svelto, Opt. Lett. 19, 1986 (1994); S. Longhi, S. Taccheo, P. Laporta, and C. Svelto, Electron. Lett. 31, 368 (1995).
[CrossRef]

Lowery, A. J.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997); M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

Miller, J. W.

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

Miyazawa, H.

K. Takada and H. Miyazawa, Electron. Lett. 26, 216 (1990).
[CrossRef]

Muriel, M. A.

Onodera, N.

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998); Electron. Lett. 34, 1 (1998).
[CrossRef]

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
[CrossRef]

Patorski, K.

K. Patorski, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, p. 1; M. V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).
[CrossRef]

Petropoulos, P.

Rauschenbach, K.

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

Richardson, D. J.

Saruwatari, M.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 34, 792 (1998).
[CrossRef]

Shake, I.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 34, 792 (1998).
[CrossRef]

Svelto, O.

S. Longhi, P. Laporta, S. Taccheo, and O. Svelto, Opt. Lett. 19, 1986 (1994); S. Longhi, S. Taccheo, P. Laporta, and C. Svelto, Electron. Lett. 31, 368 (1995).
[CrossRef]

Swanson, E. A.

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

Taccheo, S.

S. Longhi, P. Laporta, S. Taccheo, and O. Svelto, Opt. Lett. 19, 1986 (1994); S. Longhi, S. Taccheo, P. Laporta, and C. Svelto, Electron. Lett. 31, 368 (1995).
[CrossRef]

Takada, K.

K. Takada and H. Miyazawa, Electron. Lett. 26, 216 (1990).
[CrossRef]

Takara, H.

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 34, 792 (1998).
[CrossRef]

Tucker, R. S.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
[CrossRef]

Zervas, M. N.

Zhai, L.

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
[CrossRef]

Appl. Phys. Lett. (2)

N. Onodera, A. J. Lowery, L. Zhai, Z. Ahmed, and R. S. Tucker, Appl. Phys. Lett. 62, 1329 (1993); Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996); E. Yoshida and M. Nakazawa, Electron. Lett. 32, 1372 (1996).
[CrossRef]

K. S. Abedin, N. Onodera, and M. Hyodo, Appl. Phys. Lett. 73, 1311 (1998); Electron. Lett. 34, 1 (1998).
[CrossRef]

Electron. Lett. (2)

I. Shake, H. Takara, S. Kawanishi, and M. Saruwatari, Electron. Lett. 34, 792 (1998).
[CrossRef]

K. Takada and H. Miyazawa, Electron. Lett. 26, 216 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

E. A. Swanson, S. R. Chinn, K. Hall, K. Rauschenbach, R. S. Bondurant, and J. W. Miller, IEEE Photon. Technol. Lett. 6, 1041 (1994).

J. Lightwave Technol. (1)

K. O. Hill and G. Meltz, J. Lightwave Technol. 15, 1263 (1997); M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, IEEE Photon. Technol. Lett. 10, 842 (1998).
[CrossRef]

Opt. Lett. (4)

Other (2)

We note that the positive time delay in the autocorrelation is slightly larger than the negative one, which results in the appearance of one additional pulse on the positive side. The leading and trailing edges of the pulses at the two extremes of the autocorrelation trace are hacked owing to the finite extension of rotating mirrors.

K. Patorski, in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1989), Vol. 27, p. 1; M. V. Berry and S. Klein, J. Mod. Opt. 43, 2139 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental layout for pulse-train multiplication: MO, microscope objective; EOM, electro-optic phase modulator; OC, optical circulator; EDFA, erbium-doped fiber amplifier.

Fig. 2
Fig. 2

Reflectivity and group-delay profiles of the fiber grating used for pulse-train multiplication.

Fig. 3
Fig. 3

Measured optical spectra of (a) the 2.5-GHz FM mode-locked laser and (b) the multiplied pulse train reflected from the fiber grating.

Fig. 4
Fig. 4

(a) Noncollinear autocorrelation traces of the multiplied pulse train (solid curve) and of the 2.5-GHz mode-locked pulses before multiplication (dashed curve). (b) Corresponding curves from numerical simulations. SH, second harmonic.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2Φω2=T22πNM,
Ft=1Mm=0M-1ft-mTM-δT2MexpiϕmM,N,

Metrics