Abstract

We developed a deep-UV single-mode coherent light source through two-stage highly efficient frequency conversions by use of external cavities. In the first stage, second-harmonic power of 500 mW was obtained by frequency doubling of a 746-nm Ti:sapphire laser with a conversion efficiency of 40%. In the second stage, 50-mW power at 252 nm was obtained by doubly resonant sum-frequency mixing of 373-nm light from the first-stage conversion and 780-nm light from a diode laser. The output performance of this deep-UV light source is sufficient for laser cooling of neutral silicon atoms.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
    [CrossRef] [PubMed]
  2. R. W. McGowan, D. M. Giltner, and S. A. Lee, Opt. Lett. 20, 2535 (1995).
    [CrossRef]
  3. W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
    [CrossRef]
  4. S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
    [CrossRef]
  5. Y. Kaneda and S. Kubota, Opt. Lett. 20, 2204 (1995).
    [CrossRef]
  6. T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
    [CrossRef]
  7. C. S. Adams and A. I. Ferguson, Opt. Commun. 90, 89 (1992).
    [CrossRef]
  8. G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
    [CrossRef]
  9. Y. Kaneda and S. Kubota, Appl. Opt. 36, 7766 (1998).
    [CrossRef]

1998 (1)

1997 (1)

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

1995 (2)

1993 (1)

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

1992 (1)

C. S. Adams and A. I. Ferguson, Opt. Commun. 90, 89 (1992).
[CrossRef]

1983 (1)

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

1980 (1)

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Adams, C. S.

C. S. Adams and A. I. Ferguson, Opt. Commun. 90, 89 (1992).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Celotta, R. J.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Couillaud, B.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Ferguson, A. I.

C. S. Adams and A. I. Ferguson, Opt. Commun. 90, 89 (1992).
[CrossRef]

Giltner, D. M.

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

Kaneda, Y.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

Kubota, S.

Lee, S. A.

Martin, W. C.

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

McClelland, J. J.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

McGowan, R. W.

Ohtsu, M.

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

Palm, E. C.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Sayama, S.

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

Scholten, R. E.

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Zalubas, R.

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

Appl. Opt. (1)

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, J. Appl. Phys. 39, 3597 (1968).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

W. C. Martin and R. Zalubas, J. Phys. Chem. Ref. Data 12, 323 (1983).
[CrossRef]

Opt. Commun. (3)

S. Sayama and M. Ohtsu, Opt. Commun. 137, 295 (1997).
[CrossRef]

T. W. Hänsch and B. Couillaud, Opt. Commun. 35, 441 (1980).
[CrossRef]

C. S. Adams and A. I. Ferguson, Opt. Commun. 90, 89 (1992).
[CrossRef]

Opt. Lett. (2)

Science (1)

J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262, 877 (1993).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the deep-UV coherent light source. The laser beam is incident at 5° upon all mirrors. ISR’s, isolators; ML’s, mode-matching lenses; CL’s, cylindrical lenses; PZT’s, piezotransducers; HR252, high-reflection mirror at 252 nm; HC’s, polarizing optics for collection of the error signal by the Hänsch–Couillaud method. M2, M3, high-reflection mirrors at 746 nm; M7, high-reflection mirror at 373 and 780 nm. See text for other definitions.

Fig. 2
Fig. 2

Output power of 373-nm radiation as a function of the input power of 746-nm radiation into the first external cavity.

Fig. 3
Fig. 3

Output power of 252-nm radiation as a function of the input power of 780-nm radiation into the second cavity.

Metrics