Abstract

We demonstrate for the first time to our knowledge, experimentally and theoretically, that the pulse-to-pulse amplitude fluctuations that occur in pulse trains generated by actively mode-locked Er-doped fiber lasers in a repetition-rate-doubling rational-harmonic mode-locking regime are completely eliminated when the modulation frequency is properly tuned. Irregularity of the pulse position in the train was found to be the only drawback of this regime. One could reduce the irregularity to a value acceptable for applications by increasing the bandwidth of the optical filter installed in the laser cavity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
    [CrossRef]
  2. R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Opt. Lett. 24, 1029 (1999).
    [CrossRef]
  3. H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, Electron. Lett. 28, 2095 (1992).
    [CrossRef]
  4. K. K. Gupta and D. Novak, Electron. Lett. 33, 1330 (1997).
    [CrossRef]
  5. D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
    [CrossRef]

1999 (1)

1997 (1)

K. K. Gupta and D. Novak, Electron. Lett. 33, 1330 (1997).
[CrossRef]

1996 (1)

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

1992 (1)

H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, Electron. Lett. 28, 2095 (1992).
[CrossRef]

1970 (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Ahmed, Z.

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

Blondel, M.

Deparis, O.

Gupta, K. K.

K. K. Gupta and D. Novak, Electron. Lett. 33, 1330 (1997).
[CrossRef]

Kawanishi, S.

H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, Electron. Lett. 28, 2095 (1992).
[CrossRef]

Kiyan, R.

Kuizenga, D. J.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Mégret, P.

Noguchi, K.

H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, Electron. Lett. 28, 2095 (1992).
[CrossRef]

Novak, D.

K. K. Gupta and D. Novak, Electron. Lett. 33, 1330 (1997).
[CrossRef]

Onodera, N.

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

Pottiez, O.

Saruwatari, M.

H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, Electron. Lett. 28, 2095 (1992).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Takara, H.

H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, Electron. Lett. 28, 2095 (1992).
[CrossRef]

Electron. Lett. (3)

Z. Ahmed and N. Onodera, Electron. Lett. 32, 455 (1996).
[CrossRef]

H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, Electron. Lett. 28, 2095 (1992).
[CrossRef]

K. K. Gupta and D. Novak, Electron. Lett. 33, 1330 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kuizenga and A. E. Siegman, IEEE J. Quantum Electron. 6, 694 (1970).
[CrossRef]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental and theoretical dependencies of temporal parameters (a) θ0 and (b) Δθ on the normalized modulation frequency detuning.

Fig. 2
Fig. 2

Experimental and theoretical dependencies of pulse-to-pulse amplitude fluctuations δI on the normalized modulation frequency detuning.

Fig. 3
Fig. 3

Experimental and theoretical dependencies of the pulse width (filled squares and solid curve) and the time–bandwidth product (open circles and dashed line) on the normalized modulation amplitude for δfM=0.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δθ=-πkkSR sin2ψ0cosθ02aαm12,
δI=-cotψ0tanπR sinθ0×1-kkSπ2R2 cos2θ0aαM12,
τm=1π2 ln 2kSfMΔvαM121/21-kkSαMmαM12,
kSkδfM=R cosθ0sin2πR sinθ02aαM12.

Metrics