Abstract

A new structural waveguide, which is referred to as a channel–planar composite optical waveguide (COWG), has been fabricated by sputtering of a titanium dioxide TiO2 film onto a glass substrate with potassium ion-exchanged channel waveguides. By use of a mask during deposition, the TiO2 film was formed into a 27-nm-thick, 5-mm-wide strip with two 1-mm-long tapered ends perpendicular to the channel waveguides. Adiabatic transition of the TE00 mode and the TE00TM00 mode separation inside such a channel–planar COWG were demonstrated by combination of theoretical analysis and measurement of the experimental attenuation that arises from scattering loss and evanescent-field dye absorption. Changing the superstrate index in the region of the TiO2 film in the channel–planar COWG yielded polarimetric interference patterns. This new technique can be applied to integrated optical chemical and biological sensors to produce enhanced sensitivity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription