Abstract

Supercontinuum light with a spectrum more than two octaves broad (370–1545 nm at the 20-dB level) was generated in a standard telecommunications fiber by femtosecond pulses from an unamplified Ti:sapphire laser. The fiber had been tapered to a diameter of 2 µm over a 90-mm length. The pulse energy was 3.9 nJ (average power, 300 mW). This source of high-intensity single-mode white light should find widespread applications in frequency metrology and spectroscopy, especially since no unconventional fibers are needed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000).
    [CrossRef]
  2. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996); errata 22, 484 (1997).
    [CrossRef] [PubMed]
  3. See, for example, T. W. Hänsch, R. Holzwarth, J. Reichert, and T. Udem, in Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington, D.C., 2000), p. 109.
  4. T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
    [CrossRef]
  5. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. R. Wigley, and G. I. Stegeman, Opt. Lett. 18, 1996 (1993).
    [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).
  7. T. A. Birks and Y. W. Li, IEEE J. Lightwave Technol. 10, 432 (1992).
    [CrossRef]

2000 (1)

1999 (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

1996 (1)

1993 (1)

1992 (1)

T. A. Birks and Y. W. Li, IEEE J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Atkin, D. M.

Birks, T. A.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996); errata 22, 484 (1997).
[CrossRef] [PubMed]

T. A. Birks and Y. W. Li, IEEE J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Bures, J.

Dumais, P.

Gonthier, F.

Hänsch, T. W.

See, for example, T. W. Hänsch, R. Holzwarth, J. Reichert, and T. Udem, in Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington, D.C., 2000), p. 109.

Holzwarth, R.

See, for example, T. W. Hänsch, R. Holzwarth, J. Reichert, and T. Udem, in Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington, D.C., 2000), p. 109.

Knight, J. C.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996); errata 22, 484 (1997).
[CrossRef] [PubMed]

Lacroix, S.

Li, Y. W.

T. A. Birks and Y. W. Li, IEEE J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

Mogilevtsev, D.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

Ranka, J. K.

Reichert, J.

See, for example, T. W. Hänsch, R. Holzwarth, J. Reichert, and T. Udem, in Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington, D.C., 2000), p. 109.

Russell, P. St. J.

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996); errata 22, 484 (1997).
[CrossRef] [PubMed]

Stegeman, G. I.

Stentz, A. J.

Udem, T.

See, for example, T. W. Hänsch, R. Holzwarth, J. Reichert, and T. Udem, in Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington, D.C., 2000), p. 109.

Villeneuve, A.

Wigley, P. G. R.

Windeler, R. S.

IEEE J. Lightwave Technol. (1)

T. A. Birks and Y. W. Li, IEEE J. Lightwave Technol. 10, 432 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. A. Birks, D. Mogilevtsev, J. C. Knight, and P. St. J. Russell, IEEE Photon. Technol. Lett. 11, 674 (1999).
[CrossRef]

Opt. Lett. (3)

Other (2)

See, for example, T. W. Hänsch, R. Holzwarth, J. Reichert, and T. Udem, in Digest of Quantum Electronics and Laser Science Conference (Optical Society of America, Washington, D.C., 2000), p. 109.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a tapered fiber. Light in the core expands to fill the whole fiber in the taper waist.

Fig. 2
Fig. 2

Calculated GVD of a taper waist in air versus (a) diameter for λ=850 nm (the asymptote is the GVD of silica) and (b) λ for (left to right) diameters of 1.0, 1.5, and 2.5 µm, and for bulk silica. Positive values represent anomalous dispersion.

Fig. 3
Fig. 3

Visible output far-field pattern from one of the tapered fibers.

Fig. 4
Fig. 4

Output spectra from tapered fibers with waists of 1.8µm diameter for an average laser power of 300 mW. The cutoff wavelengths of the untapered fibers were (a) 1250 nm (Corning SMF-28) and (b) 735 nm (Newport F-SF). The dashed curves are the input spectra, scaled vertically for comparison.

Fig. 5
Fig. 5

Output spectra from a tapered fiber with a 2µm waist, for (top to bottom) average powers of 380, 210, and 60 mW, with the input spectrum. The curves are scaled vertically for comparison; the output spectra all had approximately the same peak value.

Fig. 6
Fig. 6

Output spectra for waist diameters and average powers of (a) 2.5 µm and 430 mW, (b) 2.0 µm and 380 mW, (c) 1.8 µm and 300 mW, (d) 1.5 µm and 70 mW. The dashed curves are the (vertically scaled) input spectra.

Metrics