Abstract

A laser-cooled neutral-atom beam from a low-velocity intense source is split into two beams while it is guided by a magnetic-field potential. We generate our multimode beam-splitter potential with two current-carrying wires upon a glass substrate combined with an external transverse bias field. The atoms are guided around curves and a beam-splitter region within a 10-cm guide length. We achieve a maximum integrated flux of 1.5×105 atoms/s with a current density of 5×104 amp/cm2 in the 100µm-diameter wires. The initial beam can be split into two beams with a 50/50 splitting ratio.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Stern and O. Gerlach, Z. Phys. 8, 10 (1921).
  2. A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
    [CrossRef]
  3. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).
    [CrossRef]
  4. J. Schmiedmayer, Phys. Rev. A 52, R13 (1995).
    [CrossRef]
  5. M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
    [CrossRef] [PubMed]
  6. J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
    [CrossRef]
  7. N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
    [CrossRef] [PubMed]
  8. J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).
    [CrossRef]
  9. J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
    [CrossRef]
  10. J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
    [CrossRef]
  11. D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
    [CrossRef]
  12. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
    [CrossRef] [PubMed]
  13. Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
    [CrossRef] [PubMed]
  14. D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, Phys. Rev. A 61, 033411 (2000).
    [CrossRef]

2000 (3)

M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
[CrossRef] [PubMed]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, Phys. Rev. A 61, 033411 (2000).
[CrossRef]

1999 (4)

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

1998 (1)

J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).
[CrossRef]

1997 (2)

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).
[CrossRef]

1996 (1)

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

1995 (1)

J. Schmiedmayer, Phys. Rev. A 52, R13 (1995).
[CrossRef]

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

1921 (1)

W. Stern and O. Gerlach, Z. Phys. 8, 10 (1921).

Abraham, E. R. I.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, Phys. Rev. A 61, 033411 (2000).
[CrossRef]

Anderson, D. Z.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, Phys. Rev. A 61, 033411 (2000).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Anderson, M. H.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Bouyer, P.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Cassettari, D.

J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
[CrossRef]

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

Chapman, M. S.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

Chenet, A.

J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
[CrossRef]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Cornell, E. A.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, Phys. Rev. A 61, 033411 (2000).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Corwin, K. L.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Dekker, N. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Denschlag, J.

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
[CrossRef]

Drndic, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Fortagh, J.

J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).
[CrossRef]

Gerlach, O.

W. Stern and O. Gerlach, Z. Phys. 8, 10 (1921).

Grossmann, A.

J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).
[CrossRef]

Grow, R. J.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Gustavson, T. L.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).
[CrossRef]

Hammond, T. D.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

Hänsch, T. W.

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).
[CrossRef]

Hänsel, W.

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Hinds, E. A.

M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
[CrossRef] [PubMed]

Hughes, I. G.

M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
[CrossRef] [PubMed]

Kasevich, M. A.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).
[CrossRef]

Key, M.

M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
[CrossRef] [PubMed]

Lee, C. S.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Lenef, A.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

Lorent, V.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Lu, Z. T.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Müller, D.

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, Phys. Rev. A 61, 033411 (2000).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Prentiss, M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Pritchard, D. E.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Reichel, J.

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Renn, M. J.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Rooijakkers, W.

M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
[CrossRef] [PubMed]

Rubenstein, R. A.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

Sauer, B. E.

M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
[CrossRef] [PubMed]

Schmiedmayer, J.

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
[CrossRef]

J. Schmiedmayer, Phys. Rev. A 52, R13 (1995).
[CrossRef]

Schneider, S.

J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
[CrossRef]

Schwindt, P. D. D.

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

Smith, E. T.

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

Smith, S. P.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Stern, W.

W. Stern and O. Gerlach, Z. Phys. 8, 10 (1921).

Thywissen, J. H.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Westervelt, R. M.

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

Wieman, C. E.

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Zimmermann, C.

J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).
[CrossRef]

Appl. Phys. B (1)

J. Denschlag, D. Cassettari, A. Chenet, S. Schneider, and J. Schmiedmayer, Appl. Phys. B 69, 291 (1999).
[CrossRef]

Phys. Rev. A (2)

J. Schmiedmayer, Phys. Rev. A 52, R13 (1995).
[CrossRef]

D. Müller, E. A. Cornell, D. Z. Anderson, and E. R. I. Abraham, Phys. Rev. A 61, 033411 (2000).
[CrossRef]

Phys. Rev. Lett. (10)

A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, Phys. Rev. Lett. 78, 760 (1997).
[CrossRef]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, Phys. Rev. Lett. 78, 2046 (1997).
[CrossRef]

M. Key, I. G. Hughes, W. Rooijakkers, B. E. Sauer, and E. A. Hinds, Phys. Rev. Lett. 84, 1371 (2000).
[CrossRef] [PubMed]

J. Denschlag, D. Cassettari, and J. Schmiedmayer, Phys. Rev. Lett. 82, 2014 (1999).
[CrossRef]

N. H. Dekker, C. S. Lee, V. Lorent, J. H. Thywissen, S. P. Smith, M. Drndic, R. M. Westervelt, and M. Prentiss, Phys. Rev. Lett. 84, 1124 (2000).
[CrossRef] [PubMed]

J. Fortagh, A. Grossmann, C. Zimmermann, and T. W. Hänsch, Phys. Rev. Lett. 81, 5310 (1998).
[CrossRef]

J. Reichel, W. Hänsel, and T. W. Hänsch, Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

D. Müller, D. Z. Anderson, R. J. Grow, P. D. D. Schwindt, and E. A. Cornell, Phys. Rev. Lett. 83, 5194 (1999).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett. 59, 2631 (1987); C. Monroe, W. Swann, H. Robinson, and C. E. Wieman, Phys. Rev. Lett. 65, 1571 (1990).
[CrossRef] [PubMed]

Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E. Wieman, Phys. Rev. Lett. 77, 3331 (1996).
[CrossRef] [PubMed]

Z. Phys. (1)

W. Stern and O. Gerlach, Z. Phys. 8, 10 (1921).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Contour lines of magnetic-field potential and schematic of the guide. (a)–(c) Cross-sectional cut across the wires. (a) When a bias field is applied transversely to the wires, the magnetic field becomes zero just above the wire surface. (b) For large track separations d=300 µm the magnetic-field minima do not merge. (c) As the track spacing is reduced d=100 µm, the magnetic-field minima merge to form one field minimum. (d) The transverse-bias field is generated with an electromagnet near the wire substrate. The mirror hole is aligned with one of the wires to couple the source atoms into the guide. Atoms encounter the beam-splitter region 25 mm downstream.

Fig. 2
Fig. 2

Guided atom flux. We measure the guided atom flux versus the wire current at several transverse-bias fields. (a) For each bias field we observe an optimum wire current where the guided flux peaks. (b) The guided-atom beam profile. We move the hot wire perpendicular to the propagation direction to map out the transverse-velocity distribution. We use the width of the Gaussian fit to determine the rms transverse velocity to be vt=17.2±3.5 cm/s. The dip in flux near 6 mm is an artifact that is due to the presence of some stray source atoms that contaminate the guided-atom beam profile. Those data points appear negative because of a background-subtraction procedure.

Fig. 3
Fig. 3

Flux–wire-current ratio. (a) Experimental data, (b) simulation of our beam splitter. With no current in wire 2, all atoms coupled into guide 1 exit the same guide. As the current in wire 2 is increased, the beam splitter is turned on, and atoms are transferred to guide 2. For the experimental (simulation) data, the transverse-bias field, the longitudinal-bias field, and Iguide1 are held constant at values 86 G (100 G), 14 G (14 G), and 5.0 A (5.0 A), respectively. The simulation shows good qualitative agreement with our experimental data.

Fig. 4
Fig. 4

Magnetic-field minima crossing. For our curvature R and spacing the magnetic-field minima cross in the center region with angles α and β between the two trajectories. Atoms coupled into one guide are more likely to be transferred into the other guide when both wires carry equal currents, because of the atoms’ tendency to shoot straight across the intersection.

Metrics