Abstract

We demonstrate, for the first time to our knowledge, that efficient third-harmonic generation can be achieved with a cubic contribution much larger than the quadratic processes. An energy-conversion efficiency of 2.4% is achieved for cubic third-harmonic generation that is phase matched along the x axis of a KTiOPO4 crystal by use of a picosecond fundamental laser emitting at 1618 nm. The associated cascading processes are only 10% of the pure cubic interaction, which is very suitable for study of the specific quantum optical correlations. Calculations of the third-harmonic generation conversion efficiency with respect to group-velocity dispersion and to the longitudinal Gaussian beam profile account well for our experimental results.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
    [CrossRef]
  2. P. S. Banks, M. D. Feit, and M. D. Perry, Opt. Lett. 24, 4 (1999).
    [CrossRef]
  3. B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
    [CrossRef]
  4. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
    [CrossRef] [PubMed]
  5. S. A. Akhmanov, A. I. Kovrygin, and A. P. Sukhorukov, in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part B, pp. 473–587.
  6. S. C. Mehendale and P. K. Gupta, Opt. Commun. 68, 301 (1988).
    [CrossRef]
  7. K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
    [CrossRef]
  8. J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
    [CrossRef]
  9. A. E. Siegman, Proc. SPIE 1224, 2 (1990).
    [CrossRef]

1999 (2)

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
[CrossRef]

P. S. Banks, M. D. Feit, and M. D. Perry, Opt. Lett. 24, 4 (1999).
[CrossRef]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
[CrossRef] [PubMed]

1994 (1)

1991 (1)

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

1990 (1)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

1988 (2)

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

S. C. Mehendale and P. K. Gupta, Opt. Commun. 68, 301 (1988).
[CrossRef]

Akhmanov, S. A.

S. A. Akhmanov, A. I. Kovrygin, and A. P. Sukhorukov, in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part B, pp. 473–587.

Banks, P. S.

Boulanger, B.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

Delarue, P.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
[CrossRef]

Feit, M. D.

P. S. Banks, M. D. Feit, and M. D. Perry, Opt. Lett. 24, 4 (1999).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
[CrossRef] [PubMed]

Fève, J. P.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

Gupta, P. K.

S. C. Mehendale and P. K. Gupta, Opt. Commun. 68, 301 (1988).
[CrossRef]

Kato, K.

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

Kovrygin, A. I.

S. A. Akhmanov, A. I. Kovrygin, and A. P. Sukhorukov, in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part B, pp. 473–587.

Marnier, G.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
[CrossRef]

J. P. Fève, B. Boulanger, and G. Marnier, Appl. Opt. 33, 3169 (1994).
[CrossRef]

Mehendale, S. C.

S. C. Mehendale and P. K. Gupta, Opt. Commun. 68, 301 (1988).
[CrossRef]

Penzkofer, A.

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

Perry, M. D.

P. S. Banks, M. D. Feit, and M. D. Perry, Opt. Lett. 24, 4 (1999).
[CrossRef]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
[CrossRef] [PubMed]

Qiu, P.

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

Rousseau, I.

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
[CrossRef] [PubMed]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
[CrossRef] [PubMed]

Sukhorukov, A. P.

S. A. Akhmanov, A. I. Kovrygin, and A. P. Sukhorukov, in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part B, pp. 473–587.

Appl. Opt. (1)

Appl. Phys. B (1)

P. Qiu and A. Penzkofer, Appl. Phys. B 45, 225 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, IEEE J. Quantum Electron. 27, 1137 (1991).
[CrossRef]

J. Phys. B (1)

B. Boulanger, J. P. Fève, P. Delarue, I. Rousseau, and G. Marnier, J. Phys. B 32, 475 (1999).
[CrossRef]

Opt. Commun. (1)

S. C. Mehendale and P. K. Gupta, Opt. Commun. 68, 301 (1988).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, Phys. Rev. Lett. 74, 2248 (1995).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Other (1)

S. A. Akhmanov, A. I. Kovrygin, and A. P. Sukhorukov, in Quantum Electronics, H. Rabin and C. L. Tang, eds. (Academic, New York, 1975), Vol. 1, Part B, pp. 473–587.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental spectral tuning curve for the x-cut KTP crystal with L=1.07 mm.

Fig. 2
Fig. 2

Generated third-harmonic energy versus distance z between the KTP crystal and the fixed waist position. Solid curve, best fit according to Eq. (1), leading to wo/M=61.5 µm.

Fig. 3
Fig. 3

Measured energy-conversion efficiency versus fundamental intensity calculated for M2=1.8 and beam-waist radius wo=82 µm. Solid curve, plane-wave calculation according to Eq. (1).

Fig. 4
Fig. 4

Energy-conversion efficiency versus fundamental waist radius with M2=1.8. Solid curve, calculation corresponding to surface damage intensity Iω,dam=50 GW/cm2. Intensity: (a) 85, (b) 45.8, (c) 41.8 GW/cm2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η=u3ωuω=6.422×105χeff2λω2τ3ωτωT3ω,oTω,oTω,e2n3w,onω,onω,e2×L2uω2τω2wo4Gβ,
Gβ=6/π-+F2u,βdu,
Fu,β=exp-au2/β0βexp-bu+σ2dσ,

Metrics