Abstract

An improved technique for the fabrication of uniform output couplers for far-infrared lasers has been developed. The technique includes a process for uniformly removing material from the back side of the coupler’s substrate to tune the coupler’s reflectivity precisely to the specified value for a particular laser line. Depending on the condition of the coupler after use, it can be retuned to another laser line, which lies within the coupler’s reflectance envelope. Furthermore, when there is the possibility of lasing at two different laser wavelengths (as happens with some far-infrared lasers), it is possible to optimize the coupler for one wavelength while at the same time detuning the other wavelength. The fabrication and optimization of these devices are discussed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Hawkins, R. Densing, T. Scholz, and A. Gatesman, Proc. SPIE 1929, 308 (1992).
  2. D. A. Weitz, W. J. Skocpol, and M. Tinkham, Opt. Lett. 3, 13 (1978).
    [CrossRef] [PubMed]
  3. D. Véron and L. B. Whitbourn, Appl. Opt. 25, 619 (1986).
    [CrossRef]
  4. R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
    [CrossRef]
  5. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle, Appl. Opt. 33, 6046 (1994).
    [CrossRef] [PubMed]
  6. R. M. Gogolewski, “Strip grating output couplers for far infrared lasers,” Master’s thesis (University of Virginia, Charlottesville, Va., 1992).

1994

1992

C. Hawkins, R. Densing, T. Scholz, and A. Gatesman, Proc. SPIE 1929, 308 (1992).

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

1986

1978

Crowe, T. W.

Densing, R.

D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle, Appl. Opt. 33, 6046 (1994).
[CrossRef] [PubMed]

C. Hawkins, R. Densing, T. Scholz, and A. Gatesman, Proc. SPIE 1929, 308 (1992).

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

Erstling, A.

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

Gatesman, A.

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

C. Hawkins, R. Densing, T. Scholz, and A. Gatesman, Proc. SPIE 1929, 308 (1992).

Gemünd, H.-P.

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

Gogolewski, M.

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

Gogolewski, R. M.

R. M. Gogolewski, “Strip grating output couplers for far infrared lasers,” Master’s thesis (University of Virginia, Charlottesville, Va., 1992).

Hawkins, C.

C. Hawkins, R. Densing, T. Scholz, and A. Gatesman, Proc. SPIE 1929, 308 (1992).

Hesler, J. L.

Lundershausen, G.

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

Mueller, E. R.

Porterfield, D. W.

Scholz, T.

C. Hawkins, R. Densing, T. Scholz, and A. Gatesman, Proc. SPIE 1929, 308 (1992).

Skocpol, W. J.

Tinkham, M.

Véron, D.

Weikle, R. M.

Weitz, D. A.

Whitbourn, L. B.

Appl. Opt.

Infrared Phys.

R. Densing, A. Erstling, M. Gogolewski, H.-P. Gemünd, G. Lundershausen, and A. Gatesman, Infrared Phys. 33, 219 (1992).
[CrossRef]

Opt. Lett.

Proc. SPIE

C. Hawkins, R. Densing, T. Scholz, and A. Gatesman, Proc. SPIE 1929, 308 (1992).

Other

R. M. Gogolewski, “Strip grating output couplers for far infrared lasers,” Master’s thesis (University of Virginia, Charlottesville, Va., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Calculated FIR reflectance R1-Texpt of a prethinned coupler with the strips aligned parallel to vertically polarized radiation.

Fig. 2
Fig. 2

Schematic of the coupler (not to scale). The pattern consists of 4µm-wide gold strips spaced every 22 µm. The strip pattern covers the entire surface of the coupler and is approximately 100 nm thick. The multilayerd dielectric stack is designed for high reflectivity at the CO2 pump-laser wavelength.

Fig. 3
Fig. 3

Apparatus used to thin the coupler’s silicon substrate. A, motor running at a constant speed of 45 rpm; B, high-density polyethylene vessel; C, coupler’s silicon side exposed (facing up) and strip pattern covered (facing down); D, acid etch mixture.

Fig. 4
Fig. 4

Calculated FIR reflectance spectra R1-Texpt of the prethinned coupler and after three thinnings. The dashed–dotted line marks the laser frequency of 1.563 THz. For clarity the frequency range has been reduced.

Tables (1)

Tables Icon

Table 1 Output Coupler Reflectance at 1.563 THz and Approximate Reduction in Silicon Thickness

Metrics