Abstract

A fiber-optic polarimetric strain sensor of lS=10cm sensing length with three-wavelength passive quadrature digital phase demodulation is investigated. The demodulation unit uses a superluminescent diode light source with narrow-band interference filters in front of the photodiodes and real-time processing of the interference intensities by an arctan-phase-stepping algorithm. Quasi-static strain sensing is performed during slow periodic compression of a composite reinforced plastic rod with a sensor glued to its surface. The measured displacement sensitivity of δΦ/δl=125 mrad/µm, with a resistive strain gauge as a reference, agrees well with the value of 119 mrad/µm previously determined by fringe-distance measurement [Bock et al., Pure Appl. Opt. 5, 125 (1996); ]. Despite a coherence-limited fringe contrast of only a few percent, a linearity of the phase–strain characteristic of the order of 1% and a strain resolution of 2.5 µ are demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Bock, T. R. Wolinski, and T. A. Eftimov, Pure Appl. Opt. 5, 125 (1996).
    [Crossref]
  2. W. J. Bock and T. A. Eftimov, Opt. Lett. 18, 1979 (1993).
    [Crossref] [PubMed]
  3. J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
    [Crossref]
  4. W. J. Bock and W. Urbanczyk, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 479–483.
  5. N. Fürstenau, M. Schmidt, W. Bock, and W. Urbanczyk, Appl. Opt. 37, 663 (1998).
    [Crossref]
  6. K. Creath, in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1988), p. 364.
  7. M. Schmidt and N. Fürstenau, Opt. Lett. 24, 599 (1999).
    [Crossref]

1999 (1)

1998 (1)

1996 (1)

W. J. Bock, T. R. Wolinski, and T. A. Eftimov, Pure Appl. Opt. 5, 125 (1996).
[Crossref]

1994 (1)

J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
[Crossref]

1993 (1)

Bock, W.

Bock, W. J.

W. J. Bock, T. R. Wolinski, and T. A. Eftimov, Pure Appl. Opt. 5, 125 (1996).
[Crossref]

W. J. Bock and T. A. Eftimov, Opt. Lett. 18, 1979 (1993).
[Crossref] [PubMed]

W. J. Bock and W. Urbanczyk, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 479–483.

Chauvel, D.

J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
[Crossref]

Creath, K.

K. Creath, in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1988), p. 364.

Eftimov, T. A.

W. J. Bock, T. R. Wolinski, and T. A. Eftimov, Pure Appl. Opt. 5, 125 (1996).
[Crossref]

W. J. Bock and T. A. Eftimov, Opt. Lett. 18, 1979 (1993).
[Crossref] [PubMed]

Fürstenau, N.

Guerin, J. J.

J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
[Crossref]

Lequime, M.

J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
[Crossref]

Leygonie, M.

J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
[Crossref]

Schmidt, M.

Toppani, E.

J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
[Crossref]

Urbanczyk, W.

N. Fürstenau, M. Schmidt, W. Bock, and W. Urbanczyk, Appl. Opt. 37, 663 (1998).
[Crossref]

W. J. Bock and W. Urbanczyk, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 479–483.

Wolinski, T. R.

W. J. Bock, T. R. Wolinski, and T. A. Eftimov, Pure Appl. Opt. 5, 125 (1996).
[Crossref]

Appl. Opt. (1)

Opt. Lett. (2)

Proc. SPIE (1)

J. J. Guerin, M. Lequime, E. Toppani, M. Leygonie, and D. Chauvel, Proc. SPIE 2361, 224 (1994).
[Crossref]

Pure Appl. Opt. (1)

W. J. Bock, T. R. Wolinski, and T. A. Eftimov, Pure Appl. Opt. 5, 125 (1996).
[Crossref]

Other (2)

W. J. Bock and W. Urbanczyk, in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 479–483.

K. Creath, in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1988), p. 364.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a three-wavelength polarimetric strain sensor system with a sensor attached to the compression rod. ADC1–ADC3, analog–digital converters; U1U3, quadrature output signals; DAC, digital–analog converter; SLD, superluminescent diode; HV-AMP., high-voltage amplifier; PZT, piezoelectric transducer; RS232, spatial port for downloading software into controller memory (Flash EPRDOM).

Fig. 2
Fig. 2

(a) Quadrature output signals U1U3 from the polarimetric strain sensor. (b) Lissajou ellipse after quadrature adjustment.

Fig. 3
Fig. 3

Time-dependent signal from the polarimetric strain sensor with real-time phase demodulation [left vertical axis, analog output (ARCTAN) after digital–analog conversion; right vertical axis, phase] and from the resistive strain gauge (left vertical axis, ESG) used as a reference.

Fig. 4
Fig. 4

Phase strain with the resistive strain gauge (ESG) as a reference. Left vertical axis, calculated phase with real-time demodulation of the signals from Fig. 2, with resistive strain gauge readout as a reference on the horizontal axis. The bottom curve, made up of data points, shows (right vertical axis) the residuals of the demodulation signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

uit=1-μiδλ,ΦicosΦilS+ΔΦ2i,
δΦi=Λi=ΔβilS=2πΔniλiδl,
Φ=arctanU1-U3U1+U3-2U2fδΔΦij±mπ,
δΔΦlS=1lSδΦδUδU=1lS2.645radV1200Vμ=124.7mradμ m,

Metrics