Abstract

Coupling between copropagating core and cladding modes was implemented by acoustic generation of lateral vibration of an etched fiber. When these coupling processes were combined with counterpropagating coupling of a core mode and a cladding mode and the Bragg reflection of a fiber grating, switching of reflection wavelength between the Bragg wavelength and cladding-mode coupling wavelengths was achieved. We report the implementation of such acoustically induced switching behaviors and explain their operation principles. The implemented results can be used for wavelength-division multiplexed add–drop filtering.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Y. Kim, J. N. Blake, H. E. Engan, and H. J. Shaw, Opt. Lett. 11, 389 (1986).
    [CrossRef] [PubMed]
  2. J. N. Blake, B. Y. Kim, H. E. Engan, and H. J. Shaw, Opt. Lett. 12, 281 (1987).
    [CrossRef] [PubMed]
  3. R. Feed, C. Alegria, M. N. Zervas, and R. I. Laming, IEEE J. Quantum Electron. 5, 5 (1999).
  4. T. A. Birks, S. G. Farwell, P. St. J. Russell, and C. N. Pannell, Opt. Lett. 19, 1964 (1994).
    [CrossRef] [PubMed]
  5. S. H. Yun, I. K. Hwang, and B. Y. Kim, Opt. Lett. 21, 27 (1996).
    [CrossRef] [PubMed]
  6. W. F. Liu, P. St. J. Russell, and L. Dong, J. Lightwave Technol. 16, 2006 (1998).
    [CrossRef]
  7. D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, IEEE Photon. Technol. Lett. 12, 176 (2000).
    [CrossRef]
  8. T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
    [CrossRef]
  9. D. W. Huang, W. F. Liu, and C. C. Yang, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), paper WM5.
  10. V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, J. Lightwave Technol. 13, 1998 (1995).
    [CrossRef]
  11. T. Erdogan and J. E. Sipe, J. Opt. Soc. Am. A 13, 296 (1996).
    [CrossRef]

2000 (1)

D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, IEEE Photon. Technol. Lett. 12, 176 (2000).
[CrossRef]

1999 (1)

R. Feed, C. Alegria, M. N. Zervas, and R. I. Laming, IEEE J. Quantum Electron. 5, 5 (1999).

1998 (1)

1997 (1)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

1996 (2)

1995 (1)

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, J. Lightwave Technol. 13, 1998 (1995).
[CrossRef]

1994 (1)

1987 (1)

1986 (1)

Alegria, C.

R. Feed, C. Alegria, M. N. Zervas, and R. I. Laming, IEEE J. Quantum Electron. 5, 5 (1999).

Arya, V.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, J. Lightwave Technol. 13, 1998 (1995).
[CrossRef]

Birks, T. A.

Blake, J. N.

Claus, R. O.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, J. Lightwave Technol. 13, 1998 (1995).
[CrossRef]

Dong, L.

Engan, H. E.

Erdogan, T.

Farwell, S. G.

Feed, R.

R. Feed, C. Alegria, M. N. Zervas, and R. I. Laming, IEEE J. Quantum Electron. 5, 5 (1999).

Huang, D. W.

D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, IEEE Photon. Technol. Lett. 12, 176 (2000).
[CrossRef]

D. W. Huang, W. F. Liu, and C. C. Yang, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), paper WM5.

Hwang, I. K.

Kim, B. Y.

Laming, R. I.

R. Feed, C. Alegria, M. N. Zervas, and R. I. Laming, IEEE J. Quantum Electron. 5, 5 (1999).

Liu, W. F.

D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, IEEE Photon. Technol. Lett. 12, 176 (2000).
[CrossRef]

W. F. Liu, P. St. J. Russell, and L. Dong, J. Lightwave Technol. 16, 2006 (1998).
[CrossRef]

D. W. Huang, W. F. Liu, and C. C. Yang, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), paper WM5.

Murphy, K. A.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, J. Lightwave Technol. 13, 1998 (1995).
[CrossRef]

Pannell, C. N.

Russell, P. St. J.

Shaw, H. J.

Sipe, J. E.

Wang, A.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, J. Lightwave Technol. 13, 1998 (1995).
[CrossRef]

Wu, C. W.

D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, IEEE Photon. Technol. Lett. 12, 176 (2000).
[CrossRef]

Yang, C. C.

D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, IEEE Photon. Technol. Lett. 12, 176 (2000).
[CrossRef]

D. W. Huang, W. F. Liu, and C. C. Yang, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), paper WM5.

Yun, S. H.

Zervas, M. N.

R. Feed, C. Alegria, M. N. Zervas, and R. I. Laming, IEEE J. Quantum Electron. 5, 5 (1999).

IEEE J. Quantum Electron. (1)

R. Feed, C. Alegria, M. N. Zervas, and R. I. Laming, IEEE J. Quantum Electron. 5, 5 (1999).

IEEE Photon. Technol. Lett. (1)

D. W. Huang, W. F. Liu, C. W. Wu, and C. C. Yang, IEEE Photon. Technol. Lett. 12, 176 (2000).
[CrossRef]

J. Lightwave Technol. (3)

T. Erdogan, J. Lightwave Technol. 15, 1277 (1997).
[CrossRef]

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, J. Lightwave Technol. 13, 1998 (1995).
[CrossRef]

W. F. Liu, P. St. J. Russell, and L. Dong, J. Lightwave Technol. 16, 2006 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (4)

Other (1)

D. W. Huang, W. F. Liu, and C. C. Yang, in Digest of Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2000), paper WM5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Device setup for acoustically induced reflection wavelength variation. Etching a section of the fiber near the slanted Bragg grating reduced the cladding diameter to 40 µm. Close to the edge of the etched section, the fiber was laterally glued to the tip of a metal horn, which was used to translate acoustic vibration from a PZT to the fiber.

Fig. 2
Fig. 2

Transmission spectra of the fiber Bragg grating for three applied voltages (rms values). The dips at 1541.5 and 1539.7 nm correspond to the Bragg wavelength and the strongest cladding-mode coupling wavelength, respectively.

Fig. 3
Fig. 3

Variation of reflection spectrum of the device when the voltages applied to the PZT is (a) 0, (b) 1.8, (c) 10, (d) 15 V.

Fig. 4
Fig. 4

Variation of reflectivity at the two wavelengths, λB and λS, as functions of applied voltage. The results show switching behavior.

Fig. 5
Fig. 5

Schematic drawings showing the phase-matching mechanisms for various coupling processes.

Metrics