Abstract

The spatial redistribution of energy resulting from the interaction between a near-diffraction-limited nanosecond laser pulse and the nonlinear absorbing optical limiting dye silicon naphthalocyanine is described, for what is to our knowledge the first time, in an optical geometry that is likely to be found in practical applications. For input fluences above that required for nonlinear absorption but below that for bubble growth, a plane wave or Gaussian spatial input evolves unexpectedly to a sharp central spike and a well-defined outer ring. The observed energy redistribution is thought to rely on a combination of nonlinear processes, since a pure absorptive process alone cannot explain the profiles presented. A model involving nonlinear absorption and nonlinear refraction qualitatively reproduces the observed spatial profiles. It is clear from the results that the performance of optical limiting dyes in representative optical geometries, even at fluences well below that required for bubble growth, cannot be described solely by nonlinear absorption.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).
  2. V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
    [CrossRef]
  3. P. A. Miles, Appl. Opt. 33, 6965 (1994).
    [CrossRef] [PubMed]
  4. R. C. Hollins, Curr. Opin. Solid State Mater. Sci. 4, 189 (1999).
  5. M. J. Miller, A. G. Mott, and B. P. Ketchel, Proc. SPIE 3472, 24 (1998).
    [CrossRef]
  6. T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
    [CrossRef]
  7. D. Vincent, Defence Research Establishment Valcartier, Canada, personal communication (December14, 1999). A 13-ns FWHM laser pulse, with an M2 of 1.4, was incident upon a 2-mm cuvette containing SiNc in chloroform that was prepared to an external transmission of 33% at 532 nm.
  8. V. Magni, G. Cerullo, and S. De Silvestri, J. Opt. Soc. Am. A 9, 2031 (1992).
    [CrossRef]
  9. J. M. Burzler, S. Hughes, and B. S. Wherret, Appl. Phys. B 62, 397 (1996).
    [CrossRef]
  10. R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, Mater. Res. Soc. Symp. Proc. 479, 111 (1997).
    [CrossRef]

1999 (1)

R. C. Hollins, Curr. Opin. Solid State Mater. Sci. 4, 189 (1999).

1998 (1)

M. J. Miller, A. G. Mott, and B. P. Ketchel, Proc. SPIE 3472, 24 (1998).
[CrossRef]

1997 (2)

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, Mater. Res. Soc. Symp. Proc. 479, 111 (1997).
[CrossRef]

1996 (1)

J. M. Burzler, S. Hughes, and B. S. Wherret, Appl. Phys. B 62, 397 (1996).
[CrossRef]

1994 (1)

1992 (2)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

V. Magni, G. Cerullo, and S. De Silvestri, J. Opt. Soc. Am. A 9, 2031 (1992).
[CrossRef]

Becker, R. J.

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, Mater. Res. Soc. Symp. Proc. 479, 111 (1997).
[CrossRef]

Burzler, J. M.

J. M. Burzler, S. Hughes, and B. S. Wherret, Appl. Phys. B 62, 397 (1996).
[CrossRef]

Cerullo, G.

Clements, A. F.

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, Mater. Res. Soc. Symp. Proc. 479, 111 (1997).
[CrossRef]

Coulter, D. R.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

De Silvestri, S.

Dentan, V.

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

Feneyrou, P.

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

Goedert, R. V.

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, Mater. Res. Soc. Symp. Proc. 479, 111 (1997).
[CrossRef]

Hagan, D. J.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).

Hollins, R. C.

R. C. Hollins, Curr. Opin. Solid State Mater. Sci. 4, 189 (1999).

Hood, P.

R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).

Hughes, S.

J. M. Burzler, S. Hughes, and B. S. Wherret, Appl. Phys. B 62, 397 (1996).
[CrossRef]

Ketchel, B. P.

M. J. Miller, A. G. Mott, and B. P. Ketchel, Proc. SPIE 3472, 24 (1998).
[CrossRef]

Le Barny, P.

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

Lewis, K.

R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).

Magni, V.

Miles, P. A.

Miller, M. J.

M. J. Miller, A. G. Mott, and B. P. Ketchel, Proc. SPIE 3472, 24 (1998).
[CrossRef]

Mott, A. G.

M. J. Miller, A. G. Mott, and B. P. Ketchel, Proc. SPIE 3472, 24 (1998).
[CrossRef]

Pachter, R.

R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).

Perry, J. W.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).

Robin, P.

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

Sence, M. J.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

Soyer, F.

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

Sutherland, R.

R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).

Van Stryland, E. W.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

Vergnolle, M.

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

Vincent, D.

D. Vincent, Defence Research Establishment Valcartier, Canada, personal communication (December14, 1999). A 13-ns FWHM laser pulse, with an M2 of 1.4, was incident upon a 2-mm cuvette containing SiNc in chloroform that was prepared to an external transmission of 33% at 532 nm.

Wei, T. H.

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

Wherret, B. S.

J. M. Burzler, S. Hughes, and B. S. Wherret, Appl. Phys. B 62, 397 (1996).
[CrossRef]

Whittaker, T. A.

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, Mater. Res. Soc. Symp. Proc. 479, 111 (1997).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

T. H. Wei, D. J. Hagan, M. J. Sence, E. W. Van Stryland, J. W. Perry, and D. R. Coulter, Appl. Phys. B 54, 46 (1992).
[CrossRef]

J. M. Burzler, S. Hughes, and B. S. Wherret, Appl. Phys. B 62, 397 (1996).
[CrossRef]

Curr. Opin. Solid State Mater. Sci. (1)

R. C. Hollins, Curr. Opin. Solid State Mater. Sci. 4, 189 (1999).

J. Opt. Soc. Am. A (1)

Mater. Res. Soc. Symp. Proc. (2)

V. Dentan, P. Feneyrou, F. Soyer, M. Vergnolle, P. Le Barny, and P. Robin, Mater. Res. Soc. Symp. Proc. 479, 261 (1997).
[CrossRef]

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, Mater. Res. Soc. Symp. Proc. 479, 111 (1997).
[CrossRef]

Proc. SPIE (1)

M. J. Miller, A. G. Mott, and B. P. Ketchel, Proc. SPIE 3472, 24 (1998).
[CrossRef]

Other (2)

R. Sutherland, R. Pachter, P. Hood, D. J. Hagan, K. Lewis, and J. W. Perry, Mater. Res. Soc. Symp. Proc.479 (Materials Research Society, Warrendale, Pa., 1997).

D. Vincent, Defence Research Establishment Valcartier, Canada, personal communication (December14, 1999). A 13-ns FWHM laser pulse, with an M2 of 1.4, was incident upon a 2-mm cuvette containing SiNc in chloroform that was prepared to an external transmission of 33% at 532 nm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser system, f/5 telescope, and imaging system used to record the spatial profile of the laser pulse.

Fig. 2
Fig. 2

Spatial profiles of a nanosecond laser pulse, recorded at the exit pupil of the telescope, for both a plane wave and Gaussian input, with incident energies of A, 2 nJ; B, 0.5 µJ for plane-wave and 6 µJ for Gaussian, and C, 24 µJ.

Fig. 3
Fig. 3

A, Estimated radial intensity profile at the focus of the telescope. Nonlinear absorption strongly attenuated the center of the beam, whereas nonlinear refraction led to a broadened Gaussian. B, Calculated far-field radial intensity profile. A central spike and an outer ring can be seen to have evolved from the profile shown in A.

Fig. 4
Fig. 4

Radial beam profiles at the eyepiece of the telescope, as predicted by a rigorous beam-propagation model. All curves are for a spatial and temporal (16-ns FWHM) Gaussian input of 21µJ energy interacting with A, a linear absorber; B, a nonlinear absorber but ignoring nonlinear refraction; and C, a nonlinear absorber with nonlinear refraction included.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EL,r=-i2π/λLexpiπr2/λL×0rdrE0,rJ02πrr/λL.

Metrics