Abstract

Functional electro-optic polymer thin films embedded in microcavity structures have been poled by an all-optical procedure based on the interference of multiphoton absorption processes. The photoinduced χ2 tensor was then further addressed at modal resonance for the fundamental wavelength, leading to significant enhancement of the second-harmonic-generation efficiency. An order-of-magnitude enhancement, which is due to electric field resonant conditions inside the microcavity, has been probed by an optical parametric oscillator, in comparison with a single-path thin-film configuration. This configuration opens new perspectives in the realm of nonlinear photonic device processing.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Österberg and W. Margulis, Opt. Lett. 11, 516 (1986).
    [CrossRef]
  2. N. B. Baranova and Ya. Zeldovich, J. Opt. Soc. Am. B 8, 27 (1991).
    [CrossRef]
  3. C. Fiorini, F. Charra, J.-M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
    [CrossRef]
  4. S. Brasselet and J. Zyss, Opt. Lett. 22, 1464 (1997); J. Nonlin. Opt. Phys. Mater. 5, 671 (1996).
    [CrossRef]
  5. S. Brasselet and J. Zyss, J. Opt. Soc. Am. B 15, 257 (1998); J. Zyss and S. Brasselet, J. Nonlin. Opt. Phys. Mater. 7, 397 (1998).
    [CrossRef]
  6. P. C. Yeh, Optical Waves in Layered Media (Wiley Interscience, New York, 1988).
  7. A.-C. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, Phys. Rev. A 56, 3888 (1997).
    [CrossRef]

1998 (1)

1997 (3)

1991 (1)

1986 (1)

Baranova, N. B.

Brasselet, S.

Charra, F.

C. Fiorini, F. Charra, J.-M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
[CrossRef]

A.-C. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, Phys. Rev. A 56, 3888 (1997).
[CrossRef]

Etilé, A.-C.

A.-C. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, Phys. Rev. A 56, 3888 (1997).
[CrossRef]

Fiorini, C.

A.-C. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, Phys. Rev. A 56, 3888 (1997).
[CrossRef]

C. Fiorini, F. Charra, J.-M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
[CrossRef]

Margulis, W.

Nunzi, J.-M.

C. Fiorini, F. Charra, J.-M. Nunzi, and P. Raimond, J. Opt. Soc. Am. B 14, 1984 (1997).
[CrossRef]

A.-C. Etilé, C. Fiorini, F. Charra, and J.-M. Nunzi, Phys. Rev. A 56, 3888 (1997).
[CrossRef]

Österberg, U.

Raimond, P.

Yeh, P. C.

P. C. Yeh, Optical Waves in Layered Media (Wiley Interscience, New York, 1988).

Zeldovich, Ya.

Zyss, J.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Characterization of the microcavity. (a) Mirror transmission spectra: calculated (dotted curve) and measured (solid curve). (b) Bandgap spectral range of the microcavity: calculated (dashed curve) and measured (solid curve).

Fig. 2
Fig. 2

Experimental setup for a copropagating all-optical poling configuration: (a) writing step, (b) reading step. P1, Glan polarizer; L’s, converging lenses; M’s, mirrors; F1’s, IR filters; F2’s, visible bandpass filters; PM’s, photomultipliers; S, shutter; Eω, E2ω, polarized electric fields; PC’s, personal computers; THG, third-harmonic generator.

Fig. 3
Fig. 3

SHG for a polymer microcavity and for a thin film. (a) Linearly polarized writing beams, (b) cocircularly polarized writing beams.

Tables (1)

Tables Icon

Table 1 Theoretical Fabry–Perot Parametersa

Metrics