Abstract

We develop a model of large-signal steady-state magneto-optic parametric oscillation in the Faraday configuration of a singly resonant cavity. The conversion efficiency and the threshold and phase-matching conditions are discussed, and we show that tunable phase matching can be achieved by use of a static magnetic field, eliminating any walk-off effects.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  2. F. Jonsson and C. Flytzanis, Opt. Lett. 24, 1514 (1999).
    [CrossRef]
  3. F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 82, 1426 (1999).
    [CrossRef]
  4. P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed. (Springer-Verlag, Berlin, 1971).
    [CrossRef]
  5. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
    [CrossRef]
  6. J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
    [CrossRef]

1999

F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 82, 1426 (1999).
[CrossRef]

F. Jonsson and C. Flytzanis, Opt. Lett. 24, 1514 (1999).
[CrossRef]

1988

J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

Bey, P. P.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

Byrd, P. F.

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed. (Springer-Verlag, Berlin, 1971).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

Flytzanis, C.

F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 82, 1426 (1999).
[CrossRef]

F. Jonsson and C. Flytzanis, Opt. Lett. 24, 1514 (1999).
[CrossRef]

Friedman, M. D.

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed. (Springer-Verlag, Berlin, 1971).
[CrossRef]

Furdyna, J. K.

J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
[CrossRef]

Jonsson, F.

F. Jonsson and C. Flytzanis, Opt. Lett. 24, 1514 (1999).
[CrossRef]

F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 82, 1426 (1999).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Tang, C. L.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

J. Appl. Phys.

J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).
[CrossRef]

Opt. Lett.

Phys. Rev.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, Phys. Rev. 127, 1918 (1962); P. P. Bey and C. L. Tang, IEEE J. Quantum Electron. QE-8, 361 (1972).
[CrossRef]

Phys. Rev. Lett.

F. Jonsson and C. Flytzanis, Phys. Rev. Lett. 82, 1426 (1999).
[CrossRef]

Other

P. F. Byrd and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed. (Springer-Verlag, Berlin, 1971).
[CrossRef]

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Threshold pump ζ±,th versus normalized phase mismatch ϕ± for values of R±ρ0ω2ρ±1ω22 of A, 0.6; B, 0.2; C, 0.9; and D, 0.95. The dashed curves indicate the limiting trajectories for real ζ±,th.

Fig. 2
Fig. 2

Intracavity forward-traveling signal-to-pump ratio s±2 versus normalized phase mismatch ϕ±. ζ±=1, and the values of R± are A, 0.6; B, 0.8; C, 0.9; D, 0.95.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Eωk±=Eωkf± expiωk±nkz/c+Eωkb exp-iωk±nkz/c,
Eωkf±0=τ±0ωkEωkI±+ρ0ωkEωkb0,
Eωkb±L=ρ±1ωkEωkf±Lexp2iωk±nkL/c,
EωkT±=τ±1ωkEωkf±Lexpiωk±nkL/c,
Eωkf±z=Ck±uk±z1/2expiφk±z±iωk±γkz/2nkc,Eωkb±z=Ckvk±z1/2expiψk±z±iωkγkz/2nkc,
u1±z=u2±z=-u3z=-2κ±u1±u2±u31/2sin θ±,
θ±z=Δβ±Δα±+12cot θ±zlnu1±u2±u3,
v2z=ρ±1ω22u2±L, v1z=v3z=0, ψ2z=arg ρ±1ω2+φ2±L,
Δβ±=ω3n3-ω2±n2-ω1±n1/c,Δα±=ω1±γ1/n1+ω2±γ2/n2+ω3γ3/n3,
θ±=Δβ±Δα±z+φ3-φ2±-φ1±+arg κ±.
14κ±2u3z2=u3-u3au3b-u3u3c-u3,
u3a=u3I21+s±2+ϕ±2-1+s±2+ϕ±22-4ϕ±21/2,u3c=u3I21+s±2+ϕ±2+1+s±2+ϕ±22-4ϕ±21/2,
u1±z=u3I-u3z,
u2±z=1+s±2u3I-u3z,
u3z=u3a+u3b-u3a×sn2κ±u3c-u3a1/2z-Kξ±,ξ±,
ξ±2=1-s±2-ϕ±2+1+s±2+ϕ±22-4ϕ±21/221+s±2+ϕ±22-4ϕ±21/2.
φ1,2±z-φ1,2±0=Δβ±Δα±20zu3I-u3zu1,2±zdz.
1-R±s±2/R±=121-s±2-ϕ±2+1+s±2+ϕ±22-4ϕ±21/2×cn2ζ±1+s±2+ϕ±22-4ϕ±21/4-Kξ±,ξ±,
2ω2±n2±Lc+φ2±L-φ2±0+argρ0ω2ρ±1ω2=2πm,
ω2±ω20=1γ3/n3+γ1/n12n3-n11±γ2/n2-γ1/n12n2-n1,
cosh1-ϕ±21/2ζ±,th=1-1-R±ϕ±2R1/2.

Metrics