Abstract

A coherent Doppler lidar system was frequency stabilized in a master–slave configuration by a phase-modulation technique. The short-term frequency stability, 0.2 MHz rms, was maintained in a vibrational environment on a ship during a field campaign in the tropical Pacific Ocean. The long-term frequency stability was <2.6 kHz/h. Thus, in many applications, shot-to-shot frequency correction can be disregarded, which will result in increased speed and simplicity of the data-acquisition system. A frequency chirp could not be detected. These properties permit Doppler wind measurements with high efficiency and duty cycles to be made, even on airborne and spaceborne platforms.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. K. Park, G. Giuliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
    [CrossRef]
  2. L. A. Rahn, Appl. Opt. 24, 940 (1985).
    [CrossRef] [PubMed]
  3. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).
  4. S. W. Henderson, E. H. Yuen, and E. S. Fry, Opt. Lett. 11, 715 (1986).
    [CrossRef] [PubMed]
  5. Ch. E. Hamilton, Opt. Lett. 17, 728 (1992).
    [CrossRef] [PubMed]
  6. V. Wulfmeyer and J. Bösenberg, Opt. Lett. 21, 1150 (1996).
    [CrossRef] [PubMed]
  7. R. W. P. Drever, J. L. Hall, and F. V. Kowalski, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  8. V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

1996 (1)

1992 (1)

1986 (1)

1985 (1)

1984 (1)

Y. K. Park, G. Giuliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Banta, R. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

Bösenberg, J.

Brewer, A.

V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

Byer, R. L.

Y. K. Park, G. Giuliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Fry, E. S.

George, J. L.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

Giuliani, G.

Y. K. Park, G. Giuliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Grund, C. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

Hall, J. L.

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Hamilton, Ch. E.

Hardesty, R. M.

V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

Henderson, S. W.

Howell, J. N.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Newsom, R.

V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

Park, Y. K.

Y. K. Park, G. Giuliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Post, M. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

Rahn, L. A.

Randall, M.

V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

Richter, R. A.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

Walther, C.

V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

Weickmann, A. M.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

Wulfmeyer, V.

V. Wulfmeyer and J. Bösenberg, Opt. Lett. 21, 1150 (1996).
[CrossRef] [PubMed]

V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

Yuen, E. H.

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, and F. V. Kowalski, Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. K. Park, G. Giuliani, and R. L. Byer, IEEE J. Quantum Electron. 20, 117 (1984).
[CrossRef]

Opt. Lett. (3)

Other (2)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and cloud research,” J. Oceanic Atmos. Technol. (to be published).

V. Wulfmeyer, M. Randall, C. Walther, R. Newsom, A. Brewer, and R. M. Hardesty, “High-performance 2 µm Doppler lidar and its shipborne applications in the tropical marine boundary layer,” presented at the 20th International Laser Radar Conference, Vichy, France, July 10–14, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup of the slave laser for frequency stabilization: M1, M2, bending mirrors; other abbreviations defined in text.

Fig. 2
Fig. 2

Dependence of the resonance and the error signal on the relative frequency change with respect to the resonance frequency. The resonance has a FWHM of 8 MHz. The error signal changes sign with 100 kHz of the resonance maximum and extends ±45 MHz about the resonance.

Fig. 3
Fig. 3

Analysis of the short-term frequency stability of the slave laser. Top, measurement of the beat-note frequency between LO and slave-laser pulses. Bottom, spectral analysis of the frequency fluctuations.

Fig. 4
Fig. 4

Beat-note signal and spectral analysis of the slave-laser pulse. Top, single-shot beat-note signal between the LO and a slave-laser pulse. Bottom, FFT of the measured beat-note signal compared with the FFT of a 220-ns Gaussian pulse mixed with a 102.3-MHz signal.

Metrics