Abstract

An imaging variable retardance polarimeter was developed and tested by Tyo and Turner [Proc. SPIE 3753, 214 (1999)]. The signal-to-noise ratio (SNR) in the reconstructed polarization images obtained with this system varied for the four Stokes parameters. The difference in SNR is determined to be due to differences in the Euclidean lengths of the rows of the synthesis matrix used to reconstruct the Stokes parameters from the measured intensity data. I equalize (and minimize) the lengths of the rows of this matrix by minimizing the condition number of the synthesis matrix, thereby maximizing the relative importance of each of the polarimeter measurements. The performance of the optimized system is demonstrated with simulated data, and the SNR is shown to increase from a worst case of -3.1 dB for the original settings to a worst case of +5.0 dB for the optimized system.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription