Abstract

We have demonstrated quantitative chemical vapor detection with a multimode quantum cascade (QC) laser. Experiments incorporated pseudorandom code (PRC) modulation of the laser intensity to permit sensitive absorption measurements of isopropanol vapor at 8.0 µm. The demonstration shows the practicality of one technical approach for implementing low-peak-power QC lasers in the transmitter portion of a differential absorption lidar (DIAL) system. With a 31-chip, 300ns/chip PRC sequence, the measured isopropanol detection limit was 12 parts in 106 by volume times meters (3×10-3 absorption) for a simple backscatter-absorption measurement configuration.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. World 12(6), 27 (1999).
  2. F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
    [CrossRef]
  3. N. Takeuchi, K. Sakurai, and T. Ueno, Appl. Opt. 25, 63 (1986).
    [CrossRef]
  4. N. Takeuchi, N. Sugimoto, H. Baba, and K. Sakurai, Appl. Opt. 22, 1382 (1983).
    [CrossRef]
  5. J. F. Holmes and B. J. Rask, Proc. SPIE 2222, 20 (1994).
    [CrossRef]
  6. M. I. Skolnik, ed., Radar Handbook (McGraw-Hill, New York, 1970).
  7. P. L. Hanst, S. T. Hanst, and G. M. Williams, Infrared Spectra for Quantitative Analysis of Gases (Infrared Analysis, Anaheim, Calif., 1995).

1999 (2)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. World 12(6), 27 (1999).

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

1994 (1)

J. F. Holmes and B. J. Rask, Proc. SPIE 2222, 20 (1994).
[CrossRef]

1986 (1)

1983 (1)

Baba, H.

Capasso, F.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. World 12(6), 27 (1999).

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

Cho, A. Y.

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. World 12(6), 27 (1999).

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

Gmachl, C.

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. World 12(6), 27 (1999).

Hanst, P. L.

P. L. Hanst, S. T. Hanst, and G. M. Williams, Infrared Spectra for Quantitative Analysis of Gases (Infrared Analysis, Anaheim, Calif., 1995).

Hanst, S. T.

P. L. Hanst, S. T. Hanst, and G. M. Williams, Infrared Spectra for Quantitative Analysis of Gases (Infrared Analysis, Anaheim, Calif., 1995).

Holmes, J. F.

J. F. Holmes and B. J. Rask, Proc. SPIE 2222, 20 (1994).
[CrossRef]

Hutchinson, A. L.

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

Rask, B. J.

J. F. Holmes and B. J. Rask, Proc. SPIE 2222, 20 (1994).
[CrossRef]

Sakurai, K.

Sivco, D. L.

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. World 12(6), 27 (1999).

Sugimoto, N.

Takeuchi, N.

Tredicucci, A.

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

Ueno, T.

Williams, G. M.

P. L. Hanst, S. T. Hanst, and G. M. Williams, Infrared Spectra for Quantitative Analysis of Gases (Infrared Analysis, Anaheim, Calif., 1995).

Appl. Opt. (2)

IEEE J. Sel. Top. Quantum Electron. (1)

F. Capasso, A. Tredicucci, C. Gmachl, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 792 (1999), and references therein.
[CrossRef]

Phys. World (1)

F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, Phys. World 12(6), 27 (1999).

Proc. SPIE (1)

J. F. Holmes and B. J. Rask, Proc. SPIE 2222, 20 (1994).
[CrossRef]

Other (2)

M. I. Skolnik, ed., Radar Handbook (McGraw-Hill, New York, 1970).

P. L. Hanst, S. T. Hanst, and G. M. Williams, Infrared Spectra for Quantitative Analysis of Gases (Infrared Analysis, Anaheim, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Observed intensity profile of the PRC-modulated QC laser. The fundamental chip width in these sequences is 300 ns.

Fig. 2
Fig. 2

Calculated cross-correlation spectrum for the waveform depicted in Fig. 1(b).

Fig. 3
Fig. 3

Experimental configuration for quantitative absorption measurements with the PRC-modulated QC laser beam. IPA, isopropanol; PV MCT Det., photovoltaic HgCdTe detector.

Fig. 4
Fig. 4

Plot of -lnT versus isopropanol column density used for calculation of the isopropanol absorption coefficient at the QC laser operating wavelength.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Sj12n-1i=12n-1ai×ai-j=δj,0, j=0,,2n-2mod 2n-1.
SΔt12n-1T002n-1T0kPt-δt+b×Pt-Δtdt=k1-Δt-δtT0+b2n-1, Δt-δtT0
St-2ΔLc,Cl=TSt,0+δS,

Metrics