Abstract

By introduction of an optical gating beam on a semiconductor wafer, near-field terahertz (THz) imaging with a dynamic aperture has been realized. The spatial resolution is determined by the focus size of the optical gating bean and the near-field diffraction effect. THz imaging with subwavelength spatial resolution (better than 50 µm) is demonstrated.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995).
    [CrossRef]
  2. D. Mittleman, R. Jacobsen, and M. C. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
    [CrossRef]
  3. E. Betzig and J. Trautmann, Science 257, 189 (1992), and references therein.
    [CrossRef] [PubMed]
  4. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
    [CrossRef]
  5. K. Wynne and D. Jaroszynski, Opt. Lett. 24, 25 (1999).
    [CrossRef]
  6. Z. Jiang, G. Xu, and X.-C. Zhang, Appl. Opt. 39, 2982 (2000).
    [CrossRef]
  7. B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
    [CrossRef]
  8. J. Shah, Hot Carriers in Semiconductor Nanostructures: Physics and Applications (Academic, Boston, Mass., 1992), pp. 279–312.
    [CrossRef]
  9. F. G. Sun, X.-C. Zhang, and W. Ji, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2000), p. 479.

2000 (1)

1999 (1)

1998 (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

1996 (1)

D. Mittleman, R. Jacobsen, and M. C. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

1995 (1)

1992 (2)

E. Betzig and J. Trautmann, Science 257, 189 (1992), and references therein.
[CrossRef] [PubMed]

B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Betzig, E.

E. Betzig and J. Trautmann, Science 257, 189 (1992), and references therein.
[CrossRef] [PubMed]

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

Chuang, S. L.

B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Dykaar, D.

B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Greene, B.

B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Hu, B. B.

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

Jacobsen, R.

D. Mittleman, R. Jacobsen, and M. C. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

Jaroszynski, D.

Ji, W.

F. G. Sun, X.-C. Zhang, and W. Ji, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2000), p. 479.

Jiang, Z.

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

Mittleman, D.

D. Mittleman, R. Jacobsen, and M. C. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

D. Mittleman, R. Jacobsen, and M. C. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995).
[CrossRef]

Sateta, P.

B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Schmitt-Rink, S.

B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

Shah, J.

J. Shah, Hot Carriers in Semiconductor Nanostructures: Physics and Applications (Academic, Boston, Mass., 1992), pp. 279–312.
[CrossRef]

Sun, F. G.

F. G. Sun, X.-C. Zhang, and W. Ji, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2000), p. 479.

Trautmann, J.

E. Betzig and J. Trautmann, Science 257, 189 (1992), and references therein.
[CrossRef] [PubMed]

Wynne, K.

Xu, G.

Zhang, X.-C.

Z. Jiang, G. Xu, and X.-C. Zhang, Appl. Opt. 39, 2982 (2000).
[CrossRef]

F. G. Sun, X.-C. Zhang, and W. Ji, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2000), p. 479.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, IEEE J. Quantum Electron. 28, 2302 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mittleman, R. Jacobsen, and M. C. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

Opt. Commun. (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, Opt. Commun. 150, 22 (1998).
[CrossRef]

Opt. Lett. (2)

Science (1)

E. Betzig and J. Trautmann, Science 257, 189 (1992), and references therein.
[CrossRef] [PubMed]

Other (2)

J. Shah, Hot Carriers in Semiconductor Nanostructures: Physics and Applications (Academic, Boston, Mass., 1992), pp. 279–312.
[CrossRef]

F. G. Sun, X.-C. Zhang, and W. Ji, in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, D.C., 2000), p. 479.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic illustration of near-field THz imaging with a dynamic aperture: C, chopper; L’s, lenses; P, polarizers.

Fig. 2
Fig. 2

Variation of a THz signal with time delay between the THz beam and optical gating beam. Negative timing means that the optical gating pulse arrives later than the THz pulse.

Fig. 3
Fig. 3

THz images of a metal circuit deposited on a GaAs wafer, obtained by (a) the near-field technique with a dynamic aperture, (b) conventional THz imaging, and (c) the near-field technique with a dynamic aperture (the sample was flipped).

Fig. 4
Fig. 4

THz imaging of the word THz by the near-field technique with a dynamic aperture. The spatial resolution is better than 50 µm.

Metrics