Abstract

We report the observation of p-polarized guided waves that propagate confined to the surface of a two-dimensional array of silver (Ag) nanoparticles of average particle diameter and film thickness of approximately 400 and 154 nm, respectively, and comparable interparticle spacing. We interpret resonant features in the attenuated total reflection angular spectrum as arising from the excitation of guided waves in our discontinuous samples. The excitation of these waves is a direct consequence of the interaction of the light field with the localized resonance of the conduction electrons in the individual metal nanoparticles.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sommerfeld, Ann. Phys. 28, 665 (1909).
    [CrossRef]
  2. J. Zenneck, Ann. Phys. 23, 846 (1907).
    [CrossRef]
  3. R. H. Ritchie, Phys. Rev. 106, 874 (1957).
    [CrossRef]
  4. A polariton is supported in a material through the interaction of the photon field with polarization density oscillations. The surface-plasmon polariton is a coupled electromagnetic–surface-charge-density wave, with a dispersion relation described by the macroscopic Maxwell equations, that propagates confined to an interface between metal and dielectric.
  5. C. J. Powell and J. B. Swan, Phys. Rev. 118, 640 (1960).
    [CrossRef]
  6. See, for example, M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
    [CrossRef]
  7. See, for example, W. R. Holland and D. G. Hall, Opt. Lett. 10, 414 (1985); A. M. Glass, P. F. Liao, J. G. Bergman, and D. H. Olson, Opt. Lett. 5, 368 (1980).
    [CrossRef] [PubMed]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  9. See, for example, J. Lambe and S. L. McCarthy, Phys. Rev. Lett. 37, 923 (1976).
    [CrossRef]
  10. D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
    [CrossRef]
  11. Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
    [CrossRef]
  12. F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
    [CrossRef] [PubMed]
  13. F. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. Lett. 64, 559 (1990).
    [CrossRef] [PubMed]
  14. Although it is termed plasma-resonance absorption, this feature is actually the result of two distinct processes: absorption and radiative scatter.
  15. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  16. When modal attenuation is dominated by absorption and leakage, the attenuation length of a guided wave is given by λ/4π Imneff.

1994 (1)

Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
[CrossRef]

1993 (1)

D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
[CrossRef]

1991 (1)

F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

1990 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. Lett. 64, 559 (1990).
[CrossRef] [PubMed]

1985 (2)

1976 (1)

See, for example, J. Lambe and S. L. McCarthy, Phys. Rev. Lett. 37, 923 (1976).
[CrossRef]

1960 (1)

C. J. Powell and J. B. Swan, Phys. Rev. 118, 640 (1960).
[CrossRef]

1957 (1)

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

1909 (1)

A. Sommerfeld, Ann. Phys. 28, 665 (1909).
[CrossRef]

1907 (1)

J. Zenneck, Ann. Phys. 23, 846 (1907).
[CrossRef]

Arakawa, E. T.

Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
[CrossRef]

Aussenegg, F. R.

D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Bradberry, G. W.

F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

F. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. Lett. 64, 559 (1990).
[CrossRef] [PubMed]

Hall, D. G.

Holland, W. R.

Hopfel, R. A.

D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Inagaki, T.

Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
[CrossRef]

Lambe, J.

See, for example, J. Lambe and S. L. McCarthy, Phys. Rev. Lett. 37, 923 (1976).
[CrossRef]

Leitner, A.

D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
[CrossRef]

McCarthy, S. L.

See, for example, J. Lambe and S. L. McCarthy, Phys. Rev. Lett. 37, 923 (1976).
[CrossRef]

Moskovits, M.

See, for example, M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

Powell, C. J.

C. J. Powell and J. B. Swan, Phys. Rev. 118, 640 (1960).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

Ritchie, R. H.

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Sambles, J. R.

F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

F. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. Lett. 64, 559 (1990).
[CrossRef] [PubMed]

Schowalter, L. J.

Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
[CrossRef]

Sommerfeld, A.

A. Sommerfeld, Ann. Phys. 28, 665 (1909).
[CrossRef]

Steinmuller-Nethl, D.

D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
[CrossRef]

Swan, J. B.

C. J. Powell and J. B. Swan, Phys. Rev. 118, 640 (1960).
[CrossRef]

Thundat, T.

Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
[CrossRef]

Wokaun, A.

D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
[CrossRef]

Wu, Z. C.

Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
[CrossRef]

Yang, F.

F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

F. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. Lett. 64, 559 (1990).
[CrossRef] [PubMed]

Zenneck, J.

J. Zenneck, Ann. Phys. 23, 846 (1907).
[CrossRef]

Ann. Phys. (2)

A. Sommerfeld, Ann. Phys. 28, 665 (1909).
[CrossRef]

J. Zenneck, Ann. Phys. 23, 846 (1907).
[CrossRef]

Appl. Phys. A (1)

D. Steinmuller-Nethl, R. A. Hopfel, A. Leitner, F. R. Aussenegg, and A. Wokaun, Appl. Phys. A 57, 261 (1993).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (2)

C. J. Powell and J. B. Swan, Phys. Rev. 118, 640 (1960).
[CrossRef]

R. H. Ritchie, Phys. Rev. 106, 874 (1957).
[CrossRef]

Phys. Rev. B (1)

Z. C. Wu, E. T. Arakawa, T. Inagaki, T. Thundat, and L. J. Schowalter, Phys. Rev. B 49, 7782 (1994).
[CrossRef]

Phys. Rev. Lett. (3)

F. Yang, G. W. Bradberry, and J. R. Sambles, Phys. Rev. Lett. 66, 2030 (1991).
[CrossRef] [PubMed]

F. Yang, J. R. Sambles, and G. W. Bradberry, Phys. Rev. Lett. 64, 559 (1990).
[CrossRef] [PubMed]

See, for example, J. Lambe and S. L. McCarthy, Phys. Rev. Lett. 37, 923 (1976).
[CrossRef]

Rev. Mod. Phys. (1)

See, for example, M. Moskovits, Rev. Mod. Phys. 57, 783 (1985).
[CrossRef]

Other (5)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

A polariton is supported in a material through the interaction of the photon field with polarization density oscillations. The surface-plasmon polariton is a coupled electromagnetic–surface-charge-density wave, with a dispersion relation described by the macroscopic Maxwell equations, that propagates confined to an interface between metal and dielectric.

Although it is termed plasma-resonance absorption, this feature is actually the result of two distinct processes: absorption and radiative scatter.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

When modal attenuation is dominated by absorption and leakage, the attenuation length of a guided wave is given by λ/4π Imneff.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning electron micrograph of a 40-nm mass-thickness (154-nm average maximum thickness) Ag-island film.

Fig. 2
Fig. 2

Transmission spectrum (normal incidence) for the metal-island film shown in Fig. 1. The sample geometry is shown in the inset.

Fig. 3
Fig. 3

Plots of ATR-measured TM reflectivity for the nanoparticle array in Fig. 1 at several different wavelengths. The sharp minima correspond to angles at which a surface wave is being excited at the island-film–air interface.

Fig. 4
Fig. 4

(a) Fresnel model fit and measured p-polarized reflectivity for the 40-nm mass thickness sample at λ=457.9 nm and (b) three lowest-order TM-mode-field profiles for the three-layer air–islands–glass waveguide (ATR geometry) using islands=5.425+1.986i and an island-film thickness of 163 nm.

Metrics