Abstract

We establish the time-averaged total force on a subwavelength-sized particle in a time-harmonic-varying field. Our analysis is not restricted to the spatial dependence of the incident field. We discuss the addition of the radiative reaction term to the polarizability to deal correctly with the scattering force. As an illustration, we assess the degree of accuracy of several previously established polarizability models.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Gordon, Phys. Rev. A 8, 14 (1973).
    [CrossRef]
  2. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt. Lett. 11, 288 (1981).
    [CrossRef]
  3. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  4. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec. 1.4.3.
  5. B. T. Draine and J. C. Weingartner, Astrophys. J. 470, 551 (1996).
    [CrossRef]
  6. P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
    [CrossRef]
  7. Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
    [CrossRef]
  8. P. W. Smith, A. A. Ashkin, and W. J. Tomlison, Opt. Lett. 6, 284 (1986).
    [CrossRef]
  9. P. W. Smith, P. J. Maloney, and A. Ashkin, Opt. Lett. 7, 347 (1982).
    [CrossRef] [PubMed]
  10. B. T. Draine, Astrophys. J. 333, 848 (1988).
    [CrossRef]
  11. K. Klumme and J. Rahola, Astrophys. J. 425, 653 (1994).
    [CrossRef]
  12. A. Lakhtakia, Int. J. Mod. Phys. C 34, 583 (1992).
    [CrossRef]
  13. C. E. Dungey and C. F. Bohren, J. Opt. Soc. Am. A 8, 81 (1991).
    [CrossRef]
  14. K. Visscher and G. J. Brakenhoff, Optik 89, 174 (1992).

2000

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

1996

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

B. T. Draine and J. C. Weingartner, Astrophys. J. 470, 551 (1996).
[CrossRef]

1994

K. Klumme and J. Rahola, Astrophys. J. 425, 653 (1994).
[CrossRef]

1992

A. Lakhtakia, Int. J. Mod. Phys. C 34, 583 (1992).
[CrossRef]

K. Visscher and G. J. Brakenhoff, Optik 89, 174 (1992).

1991

1988

B. T. Draine, Astrophys. J. 333, 848 (1988).
[CrossRef]

1986

1982

1981

1973

J. P. Gordon, Phys. Rev. A 8, 14 (1973).
[CrossRef]

Asakura, T.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Ashkin, A.

Ashkin, A. A.

Bjorkholm, J. E.

Bohren, C. F.

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec. 1.4.3.

Brakenhoff, G. J.

K. Visscher and G. J. Brakenhoff, Optik 89, 174 (1992).

Chaumet, P. C.

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

Chu, S.

Draine, B. T.

B. T. Draine and J. C. Weingartner, Astrophys. J. 470, 551 (1996).
[CrossRef]

B. T. Draine, Astrophys. J. 333, 848 (1988).
[CrossRef]

Dungey, C. E.

Dziedzic, J. M.

Gordon, J. P.

J. P. Gordon, Phys. Rev. A 8, 14 (1973).
[CrossRef]

Harada, Y.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Klumme, K.

K. Klumme and J. Rahola, Astrophys. J. 425, 653 (1994).
[CrossRef]

Lakhtakia, A.

A. Lakhtakia, Int. J. Mod. Phys. C 34, 583 (1992).
[CrossRef]

Maloney, P. J.

Nieto-Vesperinas, M.

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

Rahola, J.

K. Klumme and J. Rahola, Astrophys. J. 425, 653 (1994).
[CrossRef]

Smith, P. W.

Tomlison, W. J.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Visscher, K.

K. Visscher and G. J. Brakenhoff, Optik 89, 174 (1992).

Weingartner, J. C.

B. T. Draine and J. C. Weingartner, Astrophys. J. 470, 551 (1996).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec. 1.4.3.

Astrophys. J.

B. T. Draine and J. C. Weingartner, Astrophys. J. 470, 551 (1996).
[CrossRef]

B. T. Draine, Astrophys. J. 333, 848 (1988).
[CrossRef]

K. Klumme and J. Rahola, Astrophys. J. 425, 653 (1994).
[CrossRef]

Int. J. Mod. Phys. C

A. Lakhtakia, Int. J. Mod. Phys. C 34, 583 (1992).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

Y. Harada and T. Asakura, Opt. Commun. 124, 529 (1996).
[CrossRef]

Opt. Lett.

Optik

K. Visscher and G. J. Brakenhoff, Optik 89, 174 (1992).

Phys. Rev. A

J. P. Gordon, Phys. Rev. A 8, 14 (1973).
[CrossRef]

Phys. Rev. B

P. C. Chaumet and M. Nieto-Vesperinas, Phys. Rev. B 61, 14119 (2000).
[CrossRef]

Other

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1975), Sec. 1.4.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Relative difference between the force computed by the exact Mie calculation and by the dipole approximation: thin curve, CM-RR; thick curve, LAK; dashed curve, DB. The sphere is glass = 2.25 illuminated by an incident propagating plane wave λ = 600   nm . (b) Same as (a) but for a silver sphere λ = 400   nm ,   = - 4 + i 0.7 .

Fig. 2
Fig. 2

(a) Relative difference between the component of the force perpendicular to the incident wave vector obtained by the CDM and by the dipole approximation: thin curve, CM-RR; thick curve, LAK; dashed curve, DB. The sphere is glass = 2.25 illuminated by an incident evanescent wave λ = 600   nm . (b) Same as (a) but for a silver sphere λ = 400   nm ,   = - 4 + i 0.7 .

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

F grad = 1 / 2 α 0 E 2 ,
α 0 = a 3 - 1 + 2 ,
F = E 2 8 π C abs + C scat k k ,
F = 1 4 T - T / 2 T / 2 p + p * · E + E * + 1 c p · + p · * × B + B * d t ,
F i = 1 / 2 Re p 0 j j E 0 i * + 1 c ijk p · 0 j B 0 k *
F i = 1 / 2 Re α E 0 j j E 0 i * + ijk klm E 0 j l E 0 m * .
F i = 1 / 2 Re α E 0 j i E 0 j * .
F i = 1 / 2 α 0   Re E 0 j i E 0 j * = 1 / 4 α 0   Re i E 0 2 = 1 / 4 α 0 i E 0 2 ,
α = α 0 / 1 - 2 / 3 ik 3 α 0 .
E x = exp - x 2 / 2 exp i kz - ω t ,         E y = 0 , E z = 0 .
F x = - α 0 / 2 x   exp - x 2 ,
F z = 0 .
F x = 1 / 2 Re - α x   exp - x 2 = - α 0 / 2 x   exp - x 2 1 + 4 / 9 k 6 α 0 2 ,
F z = 1 / 2 k   exp - x 2 Re - i α = exp - x 2 k 4 α 0 2 / 3 1 + 4 / 9 k 6 α 0 2 .
F x = - 1 / 2 Re α 0 x   exp - x 2 ,
F z = exp - x 2 k 4 α 0 2 3 + k   exp - x 2 2 Im α 0 .

Metrics