Abstract

The frequency of a 700-mW monolithic nonplanar Nd:YAG ring laser (NPRO) depends, with a large coupling coefficient (megahertz per milliwatt), on the power of its laser-diode pump source. Using this effect, we demonstrate frequency stabilization of a NPRO to a frequency reference by feeding back to the current of its pump diodes. We achieved an error-point frequency noise smaller than 1 mHz/Hz and, simultaneously, a reduction of the power noise of the NPRO by 10 dB without an additional power-stabilization feedback system.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
    [Crossref]
  2. T. J. Kane and R. L. Byer, Opt. Lett. 10, 65 (1985).
    [Crossref] [PubMed]
  3. A. D. Farinas, E. K. Gustafson, and R. L. Byer, J. Opt. Soc. Am. 12, 328 (1995).
  4. I. Freitag, D. Golla, S. Knoke, W. Schöne, H. Zellmer, A. Tünnermann, and H. Welling, Opt. Lett. 20, 462 (1995).
    [Crossref] [PubMed]
  5. D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
    [Crossref]
  6. B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, Opt. Lett. 23, 1704 (1998).
    [Crossref]
  7. F. Bondu, P. Fritschel, C. N. Man, and A. Brillet, Opt. Lett. 21, 582 (1996).
    [Crossref] [PubMed]
  8. V. Quetschke of the University of Hannover is preparing a manuscript entitled “Cross coupling between frequency, power and pointing of a 12 W injection-locked Nd YAG laser system,” to be submitted to Opt. Commun.
  9. T. Day, “Frequency stabilized solid state lasers for coherent optical communication,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1990).
  10. R. Heilmann and B. Wandernoth, Electron. Lett. 28, 1367 (1992).
    [Crossref]
  11. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [Crossref]
  12. C. C. Harb, T. C. Ralph, E. H. Huntington, D. E. McClelland, H. A. Bachor, and I. Freitag, J. Opt. Soc. Am. B 14, 2936 (1997).
    [Crossref]

1998 (2)

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

B. Willke, N. Uehara, E. K. Gustafson, R. L. Byer, P. J. King, S. U. Seel, and R. L. Savage, Opt. Lett. 23, 1704 (1998).
[Crossref]

1997 (1)

1996 (1)

1995 (2)

1992 (1)

R. Heilmann and B. Wandernoth, Electron. Lett. 28, 1367 (1992).
[Crossref]

1985 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Bachor, H. A.

Bondu, F.

Brillet, A.

Byer, R. L.

Day, T.

T. Day, “Frequency stabilized solid state lasers for coherent optical communication,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1990).

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Farinas, A. D.

A. D. Farinas, E. K. Gustafson, and R. L. Byer, J. Opt. Soc. Am. 12, 328 (1995).

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Freitag, I.

Fritschel, P.

Golla, D.

Gustafson, E. K.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Hamilton, M. W.

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

Harb, C. C.

Heilmann, R.

R. Heilmann and B. Wandernoth, Electron. Lett. 28, 1367 (1992).
[Crossref]

Hollitt, C.

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Huntington, E. H.

Kane, T. J.

Kerr, G. A.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

King, P. J.

Knoke, S.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Mackenzie, N. L.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Man, C. N.

McClelland, D. E.

Meers, B. J.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Mudge, D.

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

Munch, J.

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Newton, G. P.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Ottaway, D. J.

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

Quetschke, V.

V. Quetschke of the University of Hannover is preparing a manuscript entitled “Cross coupling between frequency, power and pointing of a 12 W injection-locked Nd YAG laser system,” to be submitted to Opt. Commun.

Ralph, T. C.

Robertson, D. I.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Robertson, N. A.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Savage, R. L.

Schilling, R.

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Schöne, W.

Seel, S. U.

Tünnermann, A.

Uehara, N.

Veitch, P. J.

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

Wandernoth, B.

R. Heilmann and B. Wandernoth, Electron. Lett. 28, 1367 (1992).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Welling, H.

Willke, B.

Zellmer, H.

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[Crossref]

Electron. Lett. (1)

R. Heilmann and B. Wandernoth, Electron. Lett. 28, 1367 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

D. J. Ottaway, P. J. Veitch, M. W. Hamilton, C. Hollitt, D. Mudge, and J. Munch, IEEE J. Quantum Electron. 34, 2006 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

A. D. Farinas, E. K. Gustafson, and R. L. Byer, J. Opt. Soc. Am. 12, 328 (1995).

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Other (3)

V. Quetschke of the University of Hannover is preparing a manuscript entitled “Cross coupling between frequency, power and pointing of a 12 W injection-locked Nd YAG laser system,” to be submitted to Opt. Commun.

T. Day, “Frequency stabilized solid state lasers for coherent optical communication,” Ph.D. dissertation (Stanford University, Stanford, Calif., 1990).

J. Hough, H. Ward, G. A. Kerr, N. L. Mackenzie, B. J. Meers, G. P. Newton, D. I. Robertson, N. A. Robertson, and R. Schilling, in The Detection of Gravitational Waves, D. G. Blair, ed. (Cambridge U. Press, Cambridge, 1991), pp. 329–352.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the experimental setup: A NPRO is stabilized to a rigid-spacer reference cavity by use of the Pound–Drever–Hall scheme to achieve an error signal for the control loop feeding back to the current of the NPRO’s pump diode.

Fig. 2
Fig. 2

Transfer function Tcurω of a signal summed to the current of the NPRO’s pump diode and the NPRO frequency. Power fluctuations of the pump diodes, together with this strong coupling, are responsible for the free-running laser frequency noise and allow frequency stabilization of the NPRO by a change in the power of its pump source.

Fig. 3
Fig. 3

Frequency-noise spectral density of the monolithic Nd:YAG laser relative to a rigid-spacer reference cavity. The top curve shows the free-running noise, and the middle curve is a measurement taken at the error point of a feedback loop that stabilizes the laser frequency by feeding back to the current that drives its LD pump source. The bottom curve represents the electronic noise of the measurements.

Fig. 4
Fig. 4

Spectral density of the power fluctuations of a monolithic Nd:YAG laser. The top curve (at low Fourier frequencies) shows the noise of the unstabilized laser, and the middle curve was measured while the laser frequency was stabilized by a current lock. Both measurements were taken without any dedicated active intensity stabilization. The straight line corresponds to the shot-noise limit of this measurement.

Metrics