Abstract

We present a method of producing a computer-generated hologram by use of a zero-twist linear nematic liquid-crystal spatial light modulator. A 2×1 macro pixel method is used; one pixel represents the real data, and one, the imaginary. A method is shown that produces both positive and negative analog amplitude modulation.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Lee, Appl. Opt. 9, 639 (1970).
    [CrossRef] [PubMed]
  2. C. B. Burckhardt, Appl. Opt. 9, 1949 (1970).
    [CrossRef]
  3. R. D. Juday and J. M. Florence, Proc. SPIE 3715, 112 (1999).
    [CrossRef]
  4. J. M. Florence and R. D. Juday, Proc. SPIE 1558, 487 (1991).
    [CrossRef]
  5. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), App. C.

1999 (1)

R. D. Juday and J. M. Florence, Proc. SPIE 3715, 112 (1999).
[CrossRef]

1991 (1)

J. M. Florence and R. D. Juday, Proc. SPIE 1558, 487 (1991).
[CrossRef]

1970 (2)

Burckhardt, C. B.

Florence, J. M.

R. D. Juday and J. M. Florence, Proc. SPIE 3715, 112 (1999).
[CrossRef]

J. M. Florence and R. D. Juday, Proc. SPIE 1558, 487 (1991).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), App. C.

Juday, R. D.

R. D. Juday and J. M. Florence, Proc. SPIE 3715, 112 (1999).
[CrossRef]

J. M. Florence and R. D. Juday, Proc. SPIE 1558, 487 (1991).
[CrossRef]

Lee, W. H.

Appl. Opt. (2)

Proc. SPIE (2)

R. D. Juday and J. M. Florence, Proc. SPIE 3715, 112 (1999).
[CrossRef]

J. M. Florence and R. D. Juday, Proc. SPIE 1558, 487 (1991).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996), App. C.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Left, the phase shift (in radians) created by a double-pass ZTNLC SLM as the retardance (in radians) increases. Right, the corresponding intensity transmission.

Fig. 2
Fig. 2

Method of producing a full complex modulation from two pixels.

Fig. 3
Fig. 3

Experimental setup: BS, beam splitter; POL, polarizer.

Fig. 4
Fig. 4

Calibration graph for the ZTNLC SLM: PD, normalized photodiode voltage.

Fig. 5
Fig. 5

Reconstruction of the hologram.

Fig. 6
Fig. 6

Reconstruction of the real-only part of the hologram.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L=exp-iΓ/200expiΓ/2,
121111exp-iΓ/200expiΓ/211=cos Γ/2cos Γ/2,
J=-1001LtL,
121111-exp-iΓ00expiΓ11=i sin Γi sin Γ,

Metrics