Abstract

We show through detailed numerical simulations that stable dispersion-managed solitons exist in short-period dispersion maps characterized by a dispersion-management period that is less than the amplifier spacing. These pulses show regular dynamics within the amplifier span and have greater energy enhancement than the conventional dispersion-managed soliton. We also show that greater interaction is obtained in this regime as a result of this increased enhancement.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
    [CrossRef] [PubMed]
  2. M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
    [CrossRef]
  3. A. Hasegawa, Y. Kodama, and A. Maruta, Opt. Fiber Technol. 3, 197 (1997).
    [CrossRef]
  4. N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
    [CrossRef]
  5. T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, Opt. Lett. 22, 793 (1997).
    [CrossRef] [PubMed]
  6. S. K. Turitsyn, M. P. Fedoruk, and A. Gornakova, Opt. Lett. 24, 869 (1999).
    [CrossRef]
  7. A. H. Liang, H. Toda, and A. Hasegawa, Opt. Lett. 24, 799 (1999).
    [CrossRef]
  8. A. H. Liang, Appl. Opt. 36, 3793 (1997).
    [CrossRef] [PubMed]
  9. A. H. Liang, H. Toda, and A. Hasegawa, Opt. Lett. 24, 1094 (1999).
    [CrossRef]
  10. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
    [CrossRef]
  11. J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
    [CrossRef]
  12. F. Favre, D. Le Guen, and T. Georges, J. Lightwave Technol. 17, 1032 (1999).
    [CrossRef]
  13. M. Matsumoto, IEEE Photon. Technol. Lett. 10, 373 (1998).
    [CrossRef]

1999 (4)

1998 (2)

M. Matsumoto, IEEE Photon. Technol. Lett. 10, 373 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

1997 (4)

T. Yu, E. A. Golovchenko, A. N. Pilipetskii, and C. R. Menyuk, Opt. Lett. 22, 793 (1997).
[CrossRef] [PubMed]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

A. H. Liang, Appl. Opt. 36, 3793 (1997).
[CrossRef] [PubMed]

A. Hasegawa, Y. Kodama, and A. Maruta, Opt. Fiber Technol. 3, 197 (1997).
[CrossRef]

1996 (3)

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[CrossRef]

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Bennion, I.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[CrossRef]

Berntson, A.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

Blow, K. J.

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[CrossRef]

Doran, N. J.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[CrossRef]

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

Favre, F.

Fedoruk, M. P.

Forysiak, W.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

Georges, T.

Golovchenko, E. A.

Gornakova, A.

Hasegawa, A.

Knox, F. M.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[CrossRef]

Kodama, Y.

A. Hasegawa, Y. Kodama, and A. Maruta, Opt. Fiber Technol. 3, 197 (1997).
[CrossRef]

Kubota, H.

M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Le Guen, D.

Liang, A. H.

Maruta, A.

A. Hasegawa, Y. Kodama, and A. Maruta, Opt. Fiber Technol. 3, 197 (1997).
[CrossRef]

Matsumoto, M.

M. Matsumoto, IEEE Photon. Technol. Lett. 10, 373 (1998).
[CrossRef]

Menyuk, C. R.

Nakazawa, M.

M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Nijhof, J. H. B.

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

Pilipetskii, A. N.

Sahara, A.

M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Smith, N. J.

N. J. Smith, N. J. Doran, F. M. Knox, and W. Forysiak, Opt. Lett. 21, 1981 (1996).
[CrossRef] [PubMed]

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[CrossRef]

Tamura, K.

M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

Toda, H.

Turitsyn, S. K.

Yu, T.

Appl. Opt. (1)

Electron. Lett. (3)

N. J. Smith, F. M. Knox, N. J. Doran, K. J. Blow, and I. Bennion, Electron. Lett. 32, 54 (1996).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and F. M. Knox, Electron. Lett. 33, 1726 (1997).
[CrossRef]

J. H. B. Nijhof, N. J. Doran, W. Forysiak, and A. Berntson, Electron. Lett. 34, 481 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

M. Matsumoto, IEEE Photon. Technol. Lett. 10, 373 (1998).
[CrossRef]

M. Nakazawa, H. Kubota, A. Sahara, and K. Tamura, IEEE Photon. Technol. Lett. 8, 1088 (1996).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Fiber Technol. (1)

A. Hasegawa, Y. Kodama, and A. Maruta, Opt. Fiber Technol. 3, 197 (1997).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SPDM characterized by ZpZa. Za=n/2Zp.

Fig. 2
Fig. 2

DM soliton dynamics for (solid curve) an eight-section SPDM and (dashed curve) a conventional two-section dispersion map with the amplifier positioned at the start of the anomalous-dispersion fiber section Za=0. (a) Pulse-width dynamics over Za. (b) Spectral bandwidth evolution over Za. The parameters are S=4, τ=2.5 ps and β¨ave=-0.02 ps2/km. For n=2, β¨1=-0.52 ps2/km and β¨2=0.48 ps2/km. For n=8, β¨1=-2.02 ps2/km and β¨2=1.98 ps2/km.

Fig. 3
Fig. 3

Energy enhancement as a function of amplifier position within Za. Solid curve, eight-section SPDM; dashed curve, standard two-section dispersion map. The parameters are as in Fig. 2 (the anomalous-dispersion fiber starts at Za=0). For n=2, β¨1=-0.52 ps2/km and β¨2=0.48 ps2/km. For n=8, β¨1=-2.02 ps2/km and β¨2=1.98 ps2/km.

Fig. 4
Fig. 4

Minimum and maximum energy variation of the DM soliton as a function of the number of dispersion sections per amplifier spacing. (a) S=2, (b) S=4.

Fig. 5
Fig. 5

Collision-distance dependence on amplifier position within Za for pulses separated by τsep=20 ps (equivalent to 50-GHz transmission). The parameters are S=4, τ=2.5 ps, and β¨ave=-0.02 ps2/km (the anomalous-dispersion fiber starts at Za=0). For n=2, β¨1=-0.52 ps2/km and β¨2=0.48 ps2/km. For n=8, β¨1=-2.02 ps2/km and β¨2=1.98 ps2/km.

Metrics