Abstract

Siegman [Opt. Lett. 18, 675 (1993)] showed that binary-phase plates cannot improve laser beam quality. We demonstrate that continuous spiral phase elements can improve the quality of beams that originate from a laser operating with a pure high-order transverse mode. A theoretical analysis is presented, along with experimental results obtained with a CO2 laser. The results reveal that a nearly optimal Gaussian output beam can be obtained with only a small decrease in the output power.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Abramski, H. J. Baker, A. D. Colly, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
    [CrossRef]
  2. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
    [CrossRef]
  3. R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
    [CrossRef]
  4. T. Graf and J. E. Balmer, Opt. Commun. 131, 77 (1996).
    [CrossRef]
  5. A. E. Siegman, Proc. SPIE 1224, 2 (1990).
    [CrossRef]
  6. N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 61, 381 (1992).
    [CrossRef]
  7. N. Hodgson and H. Weber, Optical Resonators (Springer-Verlag, Berlin, 1997), Chap. 5.2.
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 689.
  9. L. W. Casperson, N. K. Kincheloe, and O. M. Stafsudd, Opt. Commun. 21, 1 (1977).
    [CrossRef]
  10. A. E. Siegman, Opt. Lett. 18, 675 (1993).
    [CrossRef] [PubMed]

1999 (2)

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
[CrossRef]

1996 (1)

T. Graf and J. E. Balmer, Opt. Commun. 131, 77 (1996).
[CrossRef]

1993 (1)

A. E. Siegman, Opt. Lett. 18, 675 (1993).
[CrossRef] [PubMed]

1992 (2)

K. M. Abramski, H. J. Baker, A. D. Colly, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 61, 381 (1992).
[CrossRef]

1990 (1)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

1977 (1)

L. W. Casperson, N. K. Kincheloe, and O. M. Stafsudd, Opt. Commun. 21, 1 (1977).
[CrossRef]

Abramski, K. M.

K. M. Abramski, H. J. Baker, A. D. Colly, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Baker, H. J.

K. M. Abramski, H. J. Baker, A. D. Colly, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Balmer, J. E.

T. Graf and J. E. Balmer, Opt. Commun. 131, 77 (1996).
[CrossRef]

Casperson, L. W.

L. W. Casperson, N. K. Kincheloe, and O. M. Stafsudd, Opt. Commun. 21, 1 (1977).
[CrossRef]

Colly, A. D.

K. M. Abramski, H. J. Baker, A. D. Colly, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Danziger, Y.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
[CrossRef]

Davidson, N.

R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
[CrossRef]

N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 61, 381 (1992).
[CrossRef]

Fiesem, A. A.

R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
[CrossRef]

Friesem, A. A.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
[CrossRef]

N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 61, 381 (1992).
[CrossRef]

Graf, T.

T. Graf and J. E. Balmer, Opt. Commun. 131, 77 (1996).
[CrossRef]

Hall, D. R.

K. M. Abramski, H. J. Baker, A. D. Colly, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

Hasman, E.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
[CrossRef]

N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 61, 381 (1992).
[CrossRef]

Hodgson, N.

N. Hodgson and H. Weber, Optical Resonators (Springer-Verlag, Berlin, 1997), Chap. 5.2.
[CrossRef]

Kincheloe, N. K.

L. W. Casperson, N. K. Kincheloe, and O. M. Stafsudd, Opt. Commun. 21, 1 (1977).
[CrossRef]

Oron, R.

R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Opt. Lett. 18, 675 (1993).
[CrossRef] [PubMed]

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 689.

Stafsudd, O. M.

L. W. Casperson, N. K. Kincheloe, and O. M. Stafsudd, Opt. Commun. 21, 1 (1977).
[CrossRef]

Weber, H.

N. Hodgson and H. Weber, Optical Resonators (Springer-Verlag, Berlin, 1997), Chap. 5.2.
[CrossRef]

Appl. Phys. Lett. (3)

K. M. Abramski, H. J. Baker, A. D. Colly, and D. R. Hall, Appl. Phys. Lett. 60, 2469 (1992).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 74, 1373 (1999).
[CrossRef]

N. Davidson, A. A. Friesem, and E. Hasman, Appl. Phys. Lett. 61, 381 (1992).
[CrossRef]

Opt. Commun. (3)

L. W. Casperson, N. K. Kincheloe, and O. M. Stafsudd, Opt. Commun. 21, 1 (1977).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Fiesem, and E. Hasman, Opt. Commun. 169, 115 (1999).
[CrossRef]

T. Graf and J. E. Balmer, Opt. Commun. 131, 77 (1996).
[CrossRef]

Opt. Lett. (1)

A. E. Siegman, Opt. Lett. 18, 675 (1993).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. E. Siegman, Proc. SPIE 1224, 2 (1990).
[CrossRef]

Other (2)

N. Hodgson and H. Weber, Optical Resonators (Springer-Verlag, Berlin, 1997), Chap. 5.2.
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), p. 689.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic configuration of a laser resonator that yields a high-order helical mode and an optical mode converter that yields a nearly Gaussian mode.

Fig. 2
Fig. 2

Calculated improvement of merit function B versus the initial M2 value (given by 1+l) for different high-order helical modes.

Fig. 3
Fig. 3

Detected intensity distributions and (solid curves) calculated and (dashed curves) experimental cross sections at the spatial-filter plane (a) without and (b) with a transmissive SPE.

Fig. 4
Fig. 4

Detected intensity distributions and (solid curves) calculated and (dashed curves) experimental cross sections at the output of the optical mode converter (a) without and (b) with a spatial filter.

Tables (1)

Tables Icon

Table 1 Initial and Final M2 Values and Transformation Efficiency η for a Laser Operating with Either the Fundamental Mode or High-Order Helical Modes

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Er,θ=E0ρl/2Lplρexp-ρ/2exp-ilθ=Rplrexp-ilθ,
BfinalBinitial=Pfinal/Mfinal2Pinitial/Minitial2=ηMinitial2/Mfinal2.

Metrics