Abstract

When the frequency of light coupled into a cavity is suddenly shifted, the radiation emanating from the input port of the previously excited cavity can beat with the reflection of the frequency-shifted input on the surface of a photodetector. When the beat frequency is stable, the time decay of the resulting optical heterodyne signal can be used to measure intracavity absorption spectra with near quantum-limited sensitivity.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
    [CrossRef]
  2. M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).
  3. J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (Department of Physics, University of Colorado, Boulder, Colo., 1997), pp. 119–122.
  4. A system in which the output current can be set to correspond to either the sum or the difference of the optical outputs from a 50–50 beam splitter facilitates noise analysis; see B. L. Schumaker, Opt. Lett. 9, 189 (1984).
    [CrossRef] [PubMed]
  5. T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
    [CrossRef]
  6. M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, J. Opt. Soc. Am. B 16, 523 (1999).
    [CrossRef]

2000 (1)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

1999 (1)

1998 (1)

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

1988 (1)

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

1984 (1)

Byer, R. L.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, J. Opt. Soc. Am. B 16, 523 (1999).
[CrossRef]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Gustafson, E. K.

Harb, C. C.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

Harris, J. S.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

Husman, M. E.

Lawrence, M. J.

Levenson, M. D.

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Paldus, B. A.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

Schumaker, B. L.

Spence, T. G.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

Willke, B.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

M. J. Lawrence, B. Willke, M. E. Husman, E. K. Gustafson, and R. L. Byer, J. Opt. Soc. Am. B 16, 523 (1999).
[CrossRef]

Ye, J.

J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (Department of Physics, University of Colorado, Boulder, Colo., 1997), pp. 119–122.

Zare, R. N.

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

Chem. Phys. Lett. (1)

M. D. Levenson, B. A. Paldus, T. G. Spence, C. C. Harb, J. S. Harris, and R. N. Zare, Chem. Phys. Lett. 290, 335 (1998).

J. Opt. Soc. Am. B (1)

Opt. Lett. (1)

Rev. Sci. Instrum. (2)

T. G. Spence, C. C. Harb, B. A. Paldus, R. N. Zare, B. Willke, and R. L. Byer, Rev. Sci. Instrum. 71, 347 (2000).
[CrossRef]

A. O’Keefe and D. A. G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988).
[CrossRef]

Other (1)

J. Ye, “Ultrasensitive high resolution laser spectroscopy and its application to optical frequency standards,” Ph.D. dissertation (Department of Physics, University of Colorado, Boulder, Colo., 1997), pp. 119–122.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the three-mirror cavity, dual-detector experiment. The solid and dashed lines represent the cavity couplings before and after the frequency switch, respectively.

Fig. 2
Fig. 2

Comparison of experimental (solid) and theoretical (gray dashed) traces of photodetector output as a function of time through an entire ringdown cycle. The inset shows the excellent agreement at short times after the frequency switch. Also shown are the incoherent background level 1-η2i+R and the inferred direct signal idtR.

Fig. 3
Fig. 3

rf power [in dBm] (a) produced by frequency-switched heterodyne detection of the CRDS amplitude, compared with the averaged dark-noise level (b), detector difference noise power (c), and steady-state LO noise (d). The inset shows an absorption trace of the 0,00,02,00,3 overtone transition of 2 Torr of CO2 at 1.064 µm as recorded by this system.

Tables (1)

Tables Icon

Table 1 Experimental Parameters

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

dEcavidt+Γ-iρΔωiEcavi=iT1τE0.
E0t=ηEinct=ηEinc1t<0ηEinc2 exp-iΔΩtt>0.
Ereflt=R1Einct+τ+iT1R2R3ΣiEcavit.
Ereflt=iT1R2R3Ecav10 exp-Γt+R1Einc2 exp-iΔΩt+τ.
i+t=eqcϵ0A2ΩR12Einc22+T12R22R33Ecav102 exp-2Γt-2ηT1R1R2R3 ImEcav10Einc2* expiΔΩτ×expiΔΩt-Γt.
PΔΩ+t=i+2tR|ΔΩ+Ninc2Δν+ζΔν+2ei+tRΔν,
PΔΩ-=ζΔν+2ei+RΔν.
S/N|SNL=i+2tR|ΔΩ/2ei+RΔν=η2idt/2eΔν,

Metrics