Abstract

Three-dimensional holographic images of extended diffusing objects are simultaneously recorded and reconstructed by optical cross correlation in a second-order nonlinear crystal. An interaction geometry in which the phase-matched object and reference fields propagate slightly noncollinearly is particularly convenient for producing these second-harmonic-generated holograms.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gabor, Proc. IEEE 60, 655 (1972).
    [CrossRef]
  2. A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
    [CrossRef]
  3. A. M. Gorlanov, N. I. Grishmanova, N. A. Sventsitskaya, and V. D. Solov’yov, Kvantovaya Electron. (Moscow) 5, 415 (1982).
  4. D. M. Pepper and A. Yariv, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 23.
    [CrossRef]
  5. B. Zel’dovich, Wave Front Conjugation (Science, Moscow, 1985), p. 194.
  6. Yu. N. Denisyuk, A. Andreoni, and M. A. C. Potenza, Opt. Mem. Neural Netw. 8, 130 (2000).
  7. A. Andreoni, M. Bondani, Yu. N. Denisyuk, and M. A. C. Potenza, “Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields,” J. Opt. Soc. Am. B (to be published).
  8. Yu. N. Denisyuk, A. Andreoni, M. Bondani, and M. A. C. Potenza, “The formation of holographic image of a diffusing object in the second-harmonic light generated by nonlinear material,” Opt. Spectrosc. (to be published).
  9. A. Andreoni, M. Bondani, and M. A. C. Potenza, Opt. Commun. 154, 376 (1998).
    [CrossRef]

2000 (1)

Yu. N. Denisyuk, A. Andreoni, and M. A. C. Potenza, Opt. Mem. Neural Netw. 8, 130 (2000).

1999 (1)

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
[CrossRef]

1998 (1)

A. Andreoni, M. Bondani, and M. A. C. Potenza, Opt. Commun. 154, 376 (1998).
[CrossRef]

1982 (1)

A. M. Gorlanov, N. I. Grishmanova, N. A. Sventsitskaya, and V. D. Solov’yov, Kvantovaya Electron. (Moscow) 5, 415 (1982).

1972 (1)

D. Gabor, Proc. IEEE 60, 655 (1972).
[CrossRef]

Andreoni, A.

Yu. N. Denisyuk, A. Andreoni, and M. A. C. Potenza, Opt. Mem. Neural Netw. 8, 130 (2000).

A. Andreoni, M. Bondani, and M. A. C. Potenza, Opt. Commun. 154, 376 (1998).
[CrossRef]

Yu. N. Denisyuk, A. Andreoni, M. Bondani, and M. A. C. Potenza, “The formation of holographic image of a diffusing object in the second-harmonic light generated by nonlinear material,” Opt. Spectrosc. (to be published).

A. Andreoni, M. Bondani, Yu. N. Denisyuk, and M. A. C. Potenza, “Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields,” J. Opt. Soc. Am. B (to be published).

Bondani, M.

A. Andreoni, M. Bondani, and M. A. C. Potenza, Opt. Commun. 154, 376 (1998).
[CrossRef]

Yu. N. Denisyuk, A. Andreoni, M. Bondani, and M. A. C. Potenza, “The formation of holographic image of a diffusing object in the second-harmonic light generated by nonlinear material,” Opt. Spectrosc. (to be published).

A. Andreoni, M. Bondani, Yu. N. Denisyuk, and M. A. C. Potenza, “Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields,” J. Opt. Soc. Am. B (to be published).

Brambilla, E.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
[CrossRef]

Denisyuk, Yu. N.

Yu. N. Denisyuk, A. Andreoni, and M. A. C. Potenza, Opt. Mem. Neural Netw. 8, 130 (2000).

Yu. N. Denisyuk, A. Andreoni, M. Bondani, and M. A. C. Potenza, “The formation of holographic image of a diffusing object in the second-harmonic light generated by nonlinear material,” Opt. Spectrosc. (to be published).

A. Andreoni, M. Bondani, Yu. N. Denisyuk, and M. A. C. Potenza, “Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields,” J. Opt. Soc. Am. B (to be published).

Gabor, D.

D. Gabor, Proc. IEEE 60, 655 (1972).
[CrossRef]

Gatti, A.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
[CrossRef]

Gorlanov, A. M.

A. M. Gorlanov, N. I. Grishmanova, N. A. Sventsitskaya, and V. D. Solov’yov, Kvantovaya Electron. (Moscow) 5, 415 (1982).

Grishmanova, N. I.

A. M. Gorlanov, N. I. Grishmanova, N. A. Sventsitskaya, and V. D. Solov’yov, Kvantovaya Electron. (Moscow) 5, 415 (1982).

Kolobov, M. I.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
[CrossRef]

Lugiato, L. A.

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
[CrossRef]

Pepper, D. M.

D. M. Pepper and A. Yariv, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 23.
[CrossRef]

Potenza, M. A. C.

Yu. N. Denisyuk, A. Andreoni, and M. A. C. Potenza, Opt. Mem. Neural Netw. 8, 130 (2000).

A. Andreoni, M. Bondani, and M. A. C. Potenza, Opt. Commun. 154, 376 (1998).
[CrossRef]

Yu. N. Denisyuk, A. Andreoni, M. Bondani, and M. A. C. Potenza, “The formation of holographic image of a diffusing object in the second-harmonic light generated by nonlinear material,” Opt. Spectrosc. (to be published).

A. Andreoni, M. Bondani, Yu. N. Denisyuk, and M. A. C. Potenza, “Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields,” J. Opt. Soc. Am. B (to be published).

Solov’yov, V. D.

A. M. Gorlanov, N. I. Grishmanova, N. A. Sventsitskaya, and V. D. Solov’yov, Kvantovaya Electron. (Moscow) 5, 415 (1982).

Sventsitskaya, N. A.

A. M. Gorlanov, N. I. Grishmanova, N. A. Sventsitskaya, and V. D. Solov’yov, Kvantovaya Electron. (Moscow) 5, 415 (1982).

Yariv, A.

D. M. Pepper and A. Yariv, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 23.
[CrossRef]

Zel’dovich, B.

B. Zel’dovich, Wave Front Conjugation (Science, Moscow, 1985), p. 194.

Kvantovaya Electron. (Moscow) (1)

A. M. Gorlanov, N. I. Grishmanova, N. A. Sventsitskaya, and V. D. Solov’yov, Kvantovaya Electron. (Moscow) 5, 415 (1982).

Opt. Commun. (1)

A. Andreoni, M. Bondani, and M. A. C. Potenza, Opt. Commun. 154, 376 (1998).
[CrossRef]

Opt. Mem. Neural Netw. (1)

Yu. N. Denisyuk, A. Andreoni, and M. A. C. Potenza, Opt. Mem. Neural Netw. 8, 130 (2000).

Phys. Rev. Lett. (1)

A. Gatti, E. Brambilla, L. A. Lugiato, and M. I. Kolobov, Phys. Rev. Lett. 83, 1763 (1999).
[CrossRef]

Proc. IEEE (1)

D. Gabor, Proc. IEEE 60, 655 (1972).
[CrossRef]

Other (4)

D. M. Pepper and A. Yariv, in Optical Phase Conjugation, R. A. Fisher, ed. (Academic, New York, 1983), p. 23.
[CrossRef]

B. Zel’dovich, Wave Front Conjugation (Science, Moscow, 1985), p. 194.

A. Andreoni, M. Bondani, Yu. N. Denisyuk, and M. A. C. Potenza, “Holographic properties of the second-harmonic cross correlation of object and reference optical wave fields,” J. Opt. Soc. Am. B (to be published).

Yu. N. Denisyuk, A. Andreoni, M. Bondani, and M. A. C. Potenza, “The formation of holographic image of a diffusing object in the second-harmonic light generated by nonlinear material,” Opt. Spectrosc. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. Lenses L1, f1=1000 mm, and L2, f2=-500 mm, and diaphragms D1D4 constitute a space filter. F is a neutral filter and BS is the bisector of the angle α between beams o¯ and r¯. See text for other details. Insets, 3-D (upper) and 2-D (lower) objects.

Fig. 2
Fig. 2

Intensity maps averaged over 50 laser shots of the reconstructed image of the wire located at A (top) and B (bottom) as they were displayed by the CCD camera on focus at positions A and B, respectively (see Fig. 1), the distance between which was δexp=16 mm.

Fig. 3
Fig. 3

Intensity map averaged over 50 laser shots of the reconstructed 2-D image (the logo of Insubria University; Fig. 1) as displayed by the CCD camera on focus at C.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

EO=AOx,yexpik1LOx,y+ωt,
ER=AR expik1LRx,y+ωt,
E2ωEωEω=AO2x,y×expi2k1LOx,y+2ωt+2AOx,yAR expik1LOx,y+LRx,y+2ωt+AR2 expi2k1LRx,y+2ωt.
E2ω//=AOx,yAR×expik2LOx,y+LRx,y2+2ωt,

Metrics