Abstract

We prepared a Tm-doped glass composite with a Nd-doped layer as a model 1.4-µm thulium-doped fiber amplifier (TDFA) to investigate the effect of energy transfer on the emission spectra of the composite. The competitive 0.8-µm emission from the Tm:H34 level, which had a branching ratio ten times larger than that of the 1.4-µm emission, was reduced to 1/6 of its previous value by radiative transfer to the Nd layer. Also, the 1.06-µm emission from the excited Nd3+ was found to contribute to the upconversion pumping scheme for population inversion between the H34 and F34 levels of Tm3+. The Nd-doped glass phase can be used as a cladding material for an efficient TDFA.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Taga, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 22.
  2. A. Mori, Y. Ohishi, and S. Sudo, Electron. Lett. 33, 863 (1997).
    [CrossRef]
  3. J. S. Wang, E. M. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
    [CrossRef]
  4. T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.
  5. R. M. Percival, D. Szebesta, and J. R. Williams, Electron. Lett. 30, 1057 (1994).
    [CrossRef]
  6. T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
    [CrossRef]
  7. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
    [CrossRef]
  8. S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, J. Opt. Soc. Am. B 11, 933 (1994).
    [CrossRef]
  9. S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 53, 8358 (1996).
    [CrossRef]
  10. S. Tanabe, T. Kouda, and T. Hanada, Opt. Mater. 12, 35 (1999).
    [CrossRef]
  11. S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 47, 2507 (1993).
    [CrossRef]

1999 (1)

S. Tanabe, T. Kouda, and T. Hanada, Opt. Mater. 12, 35 (1999).
[CrossRef]

1997 (1)

A. Mori, Y. Ohishi, and S. Sudo, Electron. Lett. 33, 863 (1997).
[CrossRef]

1996 (1)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 53, 8358 (1996).
[CrossRef]

1995 (2)

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

1994 (3)

J. S. Wang, E. M. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

R. M. Percival, D. Szebesta, and J. R. Williams, Electron. Lett. 30, 1057 (1994).
[CrossRef]

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, J. Opt. Soc. Am. B 11, 933 (1994).
[CrossRef]

1993 (1)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 47, 2507 (1993).
[CrossRef]

Aozasa, A.

T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.

Hanada, T.

Hirao, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 53, 8358 (1996).
[CrossRef]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 47, 2507 (1993).
[CrossRef]

Hoshino, K.

T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.

Kanamori, T.

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

Komukai, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Konamori, T.

T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.

Kouda, T.

S. Tanabe, T. Kouda, and T. Hanada, Opt. Mater. 12, 35 (1999).
[CrossRef]

Miyajima, Y.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Mori, A.

A. Mori, Y. Ohishi, and S. Sudo, Electron. Lett. 33, 863 (1997).
[CrossRef]

Ohishi, Y.

A. Mori, Y. Ohishi, and S. Sudo, Electron. Lett. 33, 863 (1997).
[CrossRef]

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

Percival, R. M.

R. M. Percival, D. Szebesta, and J. R. Williams, Electron. Lett. 30, 1057 (1994).
[CrossRef]

Sakamoto, T.

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.

Shimizu, M.

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

Soga, N.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 53, 8358 (1996).
[CrossRef]

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, J. Opt. Soc. Am. B 11, 933 (1994).
[CrossRef]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 47, 2507 (1993).
[CrossRef]

Sudo, S.

A. Mori, Y. Ohishi, and S. Sudo, Electron. Lett. 33, 863 (1997).
[CrossRef]

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

Sugawa, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Suzuki, K.

Szebesta, D.

R. M. Percival, D. Szebesta, and J. R. Williams, Electron. Lett. 30, 1057 (1994).
[CrossRef]

Taga, H.

H. Taga, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 22.

Tamai, K.

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 53, 8358 (1996).
[CrossRef]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 47, 2507 (1993).
[CrossRef]

Tanabe, S.

S. Tanabe, T. Kouda, and T. Hanada, Opt. Mater. 12, 35 (1999).
[CrossRef]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 53, 8358 (1996).
[CrossRef]

S. Tanabe, K. Suzuki, N. Soga, and T. Hanada, J. Opt. Soc. Am. B 11, 933 (1994).
[CrossRef]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 47, 2507 (1993).
[CrossRef]

Terunuma, Y.

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

Vogel, E. M.

J. S. Wang, E. M. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

Williams, J. R.

R. M. Percival, D. Szebesta, and J. R. Williams, Electron. Lett. 30, 1057 (1994).
[CrossRef]

Yamada, M.

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.

Yamamoto, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Electron. Lett. (2)

A. Mori, Y. Ohishi, and S. Sudo, Electron. Lett. 33, 863 (1997).
[CrossRef]

R. M. Percival, D. Szebesta, and J. R. Williams, Electron. Lett. 30, 1057 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Sakamoto, M. Shimizu, T. Kanamori, Y. Terunuma, Y. Ohishi, M. Yamada, and S. Sudo, IEEE Photon. Technol. Lett. 7, 983 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Mater. (2)

J. S. Wang, E. M. Vogel, and E. Snitzer, Opt. Mater. 3, 187 (1994).
[CrossRef]

S. Tanabe, T. Kouda, and T. Hanada, Opt. Mater. 12, 35 (1999).
[CrossRef]

Phys. Rev. B (2)

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 47, 2507 (1993).
[CrossRef]

S. Tanabe, K. Tamai, K. Hirao, and N. Soga, Phys. Rev. B 53, 8358 (1996).
[CrossRef]

Other (2)

T. Sakamoto, A. Aozasa, T. Konamori, K. Hoshino, M. Yamada, and M. Shimizu, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 50.

H. Taga, in Optical Amplifiers and Their Applications, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), p. 22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of the emission spectrum of Tm glass and the absorption spectrum of Nd glass near 800 nm.

Fig. 2
Fig. 2

Emission spectra of (a) Tm-doped glass and (b) a double-layer composite with a Nd-doped layer. The emission bands of Tm3+ are both from the H34 level, and the three Nd3+ bands in (b) are all from the F43/2 level.

Fig. 3
Fig. 3

Energy levels of the Tm3+ and Nd3+ ions and the energy-transfer scheme. The 800-nm emission of Tm3+ is radiatively transferred to Nd3+ (dotted line labeled A). The 1060-nm emission from the excited Nd3+ can be used for ESA in Tm3+ (dotted line labeled B). If it is codoped, the H34 level is quenched by nonradiative transfer (NR).

Fig. 4
Fig. 4

Difference of the relative emission intensity of the 1.06- and 1.33-µm bands of Nd3+ with Nd and Tm pumping. The Tm:1.4-µm band is subtracted for comparison.

Metrics