Abstract

Enhancement of the transverse excess-noise factor is theoretically predicted in optical laser cavities with tilted end mirrors and nonuniform transverse loss. In particular, it is shown that in a loss-guided laser close to the plane–plane geometric instability boundary the excess-noise factor that is induced by mirror tilting may largely exceed that predicted for the aligned cavity. This excess noise is related to beam walk-off induced by mirror tilting, which makes possible transient amplification of noise in the transverse plane.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Petermann, IEEE J. Quantum Electron. QE-15, 566 (1979).
    [CrossRef]
  2. A. E. Siegman, Appl. Phys. B 60, 247 (1995).
    [CrossRef]
  3. A. E. Siegman, Phys. Rev. A 39, 1253, 1263 (1989).
  4. W. Streifer, D. R. Scifres, and R. D. Burnham, Appl. Phys. Lett. 40, 305 (1982).
    [CrossRef]
  5. H. A. Haus and S. Kawakami, IEEE J. Quantum Electron. QE-21, 63 (1985).
    [CrossRef]
  6. J.-L. Doumont, P. L. Mussche, and A. E. Siegman, IEEE J. Quantum Electron. 25, 1960 (1989).
    [CrossRef]
  7. G. H. C. New, J. Mod. Opt. 42, 799 (1995).
    [CrossRef]
  8. Y. J. Cheng, C. G. Fanning, and A. E. Siegman, Phys. Rev. Lett. 77, 627 (1996).
    [CrossRef] [PubMed]
  9. M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, and J. P. Woerdman, Phys. Rev. Lett. 77, 4314 (1996).
    [CrossRef] [PubMed]
  10. M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 55, 4563 (1997); O. Emile, M. Brunel, F. Bretenaker, and A. Le Floch, Phys. Rev. A 57, 4889 (1998).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  12. J. L. Remo, Opt. Lett. 3, 193 (1978).
    [CrossRef] [PubMed]
  13. L. W. Casperson, J. Opt. Soc. Am. 66, 1373 (1976).
  14. N. McCarthy and P. Lavigne, Appl. Opt. 22, 2704 (1983).
    [CrossRef]
  15. W. H. Wells, IEEE J. Quantum Electron. QE-2, 94 (1966).
    [CrossRef]
  16. M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997).
    [CrossRef]
  17. F. X. Kärtner, D. M. Zumbühl, and N. Matuschek, Phys. Rev. Lett. 82, 4428 (1999).
    [CrossRef]

1999 (1)

F. X. Kärtner, D. M. Zumbühl, and N. Matuschek, Phys. Rev. Lett. 82, 4428 (1999).
[CrossRef]

1997 (2)

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 55, 4563 (1997); O. Emile, M. Brunel, F. Bretenaker, and A. Le Floch, Phys. Rev. A 57, 4889 (1998).
[CrossRef]

M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997).
[CrossRef]

1996 (2)

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, Phys. Rev. Lett. 77, 627 (1996).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, and J. P. Woerdman, Phys. Rev. Lett. 77, 4314 (1996).
[CrossRef] [PubMed]

1995 (2)

G. H. C. New, J. Mod. Opt. 42, 799 (1995).
[CrossRef]

A. E. Siegman, Appl. Phys. B 60, 247 (1995).
[CrossRef]

1989 (2)

A. E. Siegman, Phys. Rev. A 39, 1253, 1263 (1989).

J.-L. Doumont, P. L. Mussche, and A. E. Siegman, IEEE J. Quantum Electron. 25, 1960 (1989).
[CrossRef]

1985 (1)

H. A. Haus and S. Kawakami, IEEE J. Quantum Electron. QE-21, 63 (1985).
[CrossRef]

1983 (1)

1982 (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, Appl. Phys. Lett. 40, 305 (1982).
[CrossRef]

1979 (1)

K. Petermann, IEEE J. Quantum Electron. QE-15, 566 (1979).
[CrossRef]

1978 (1)

1976 (1)

1966 (1)

W. H. Wells, IEEE J. Quantum Electron. QE-2, 94 (1966).
[CrossRef]

Bretenaker, F.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 55, 4563 (1997); O. Emile, M. Brunel, F. Bretenaker, and A. Le Floch, Phys. Rev. A 57, 4889 (1998).
[CrossRef]

Brunel, M.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 55, 4563 (1997); O. Emile, M. Brunel, F. Bretenaker, and A. Le Floch, Phys. Rev. A 57, 4889 (1998).
[CrossRef]

Burnham, R. D.

W. Streifer, D. R. Scifres, and R. D. Burnham, Appl. Phys. Lett. 40, 305 (1982).
[CrossRef]

Casperson, L. W.

Cheng, Y. J.

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, Phys. Rev. Lett. 77, 627 (1996).
[CrossRef] [PubMed]

Colet, P.

M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997).
[CrossRef]

Doumont, J.-L.

J.-L. Doumont, P. L. Mussche, and A. E. Siegman, IEEE J. Quantum Electron. 25, 1960 (1989).
[CrossRef]

Fanning, C. G.

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, Phys. Rev. Lett. 77, 627 (1996).
[CrossRef] [PubMed]

Haus, H. A.

H. A. Haus and S. Kawakami, IEEE J. Quantum Electron. QE-21, 63 (1985).
[CrossRef]

Kärtner, F. X.

F. X. Kärtner, D. M. Zumbühl, and N. Matuschek, Phys. Rev. Lett. 82, 4428 (1999).
[CrossRef]

Kawakami, S.

H. A. Haus and S. Kawakami, IEEE J. Quantum Electron. QE-21, 63 (1985).
[CrossRef]

Lavigne, P.

Le Floch, A.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 55, 4563 (1997); O. Emile, M. Brunel, F. Bretenaker, and A. Le Floch, Phys. Rev. A 57, 4889 (1998).
[CrossRef]

Lindberg, A. M.

M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, and J. P. Woerdman, Phys. Rev. Lett. 77, 4314 (1996).
[CrossRef] [PubMed]

Matuschek, N.

F. X. Kärtner, D. M. Zumbühl, and N. Matuschek, Phys. Rev. Lett. 82, 4428 (1999).
[CrossRef]

McCarthy, N.

Mussche, P. L.

J.-L. Doumont, P. L. Mussche, and A. E. Siegman, IEEE J. Quantum Electron. 25, 1960 (1989).
[CrossRef]

New, G. H. C.

G. H. C. New, J. Mod. Opt. 42, 799 (1995).
[CrossRef]

Petermann, K.

K. Petermann, IEEE J. Quantum Electron. QE-15, 566 (1979).
[CrossRef]

Remo, J. L.

Ropars, G.

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 55, 4563 (1997); O. Emile, M. Brunel, F. Bretenaker, and A. Le Floch, Phys. Rev. A 57, 4889 (1998).
[CrossRef]

San Miguel, M.

M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997).
[CrossRef]

Santagiustina, M.

M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997).
[CrossRef]

Scifres, D. R.

W. Streifer, D. R. Scifres, and R. D. Burnham, Appl. Phys. Lett. 40, 305 (1982).
[CrossRef]

Siegman, A. E.

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, Phys. Rev. Lett. 77, 627 (1996).
[CrossRef] [PubMed]

A. E. Siegman, Appl. Phys. B 60, 247 (1995).
[CrossRef]

J.-L. Doumont, P. L. Mussche, and A. E. Siegman, IEEE J. Quantum Electron. 25, 1960 (1989).
[CrossRef]

A. E. Siegman, Phys. Rev. A 39, 1253, 1263 (1989).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Streifer, W.

W. Streifer, D. R. Scifres, and R. D. Burnham, Appl. Phys. Lett. 40, 305 (1982).
[CrossRef]

Thijssen, M. S.

M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, and J. P. Woerdman, Phys. Rev. Lett. 77, 4314 (1996).
[CrossRef] [PubMed]

van Eijkelenborg, M. A.

M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, and J. P. Woerdman, Phys. Rev. Lett. 77, 4314 (1996).
[CrossRef] [PubMed]

Walgraef, D.

M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997).
[CrossRef]

Wells, W. H.

W. H. Wells, IEEE J. Quantum Electron. QE-2, 94 (1966).
[CrossRef]

Woerdman, J. P.

M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, and J. P. Woerdman, Phys. Rev. Lett. 77, 4314 (1996).
[CrossRef] [PubMed]

Zumbühl, D. M.

F. X. Kärtner, D. M. Zumbühl, and N. Matuschek, Phys. Rev. Lett. 82, 4428 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

A. E. Siegman, Appl. Phys. B 60, 247 (1995).
[CrossRef]

Appl. Phys. Lett. (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, Appl. Phys. Lett. 40, 305 (1982).
[CrossRef]

IEEE J. Quantum Electron. (4)

H. A. Haus and S. Kawakami, IEEE J. Quantum Electron. QE-21, 63 (1985).
[CrossRef]

J.-L. Doumont, P. L. Mussche, and A. E. Siegman, IEEE J. Quantum Electron. 25, 1960 (1989).
[CrossRef]

W. H. Wells, IEEE J. Quantum Electron. QE-2, 94 (1966).
[CrossRef]

K. Petermann, IEEE J. Quantum Electron. QE-15, 566 (1979).
[CrossRef]

J. Mod. Opt. (1)

G. H. C. New, J. Mod. Opt. 42, 799 (1995).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Phys. Rev. A (2)

A. E. Siegman, Phys. Rev. A 39, 1253, 1263 (1989).

M. Brunel, G. Ropars, A. Le Floch, and F. Bretenaker, Phys. Rev. A 55, 4563 (1997); O. Emile, M. Brunel, F. Bretenaker, and A. Le Floch, Phys. Rev. A 57, 4889 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

Y. J. Cheng, C. G. Fanning, and A. E. Siegman, Phys. Rev. Lett. 77, 627 (1996).
[CrossRef] [PubMed]

M. A. van Eijkelenborg, A. M. Lindberg, M. S. Thijssen, and J. P. Woerdman, Phys. Rev. Lett. 77, 4314 (1996).
[CrossRef] [PubMed]

M. Santagiustina, P. Colet, M. San Miguel, and D. Walgraef, Phys. Rev. Lett. 79, 3633 (1997).
[CrossRef]

F. X. Kärtner, D. M. Zumbühl, and N. Matuschek, Phys. Rev. Lett. 82, 4428 (1999).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a Fabry–Perot resonator with a tilted plane end mirror. The round-trip ray matrix of the aligned resonator at the plane z=0 is ABCD, n is the normal to the tilted mirror, and z is the resonator axis.

Fig. 2
Fig. 2

Excess-noise factor K0 (a) and corresponding round-trip power loss 1-σ02 (b) for the lowest-order off-axis Gaussian mode in a one-dimensional misaligned Fabry–Perot cavity with a variable-reflectivity output mirror as functions of geometric magnification (solid curves). The horizontal-scale variable is the half-trace parameter m for m<1, and the geometric magnification Mm+m2-11/2 for m>1. The parameter values are Φ=0.018 and Nga=5. The dashed curves in the figures correspond to the case of the aligned cavity Φ=0.

Fig. 3
Fig. 3

Excess-noise factors Kn for a few low-order off-axis Hermite–Gaussian modes as functions of geometric magnification in case of aligned (a) and misaligned (b) Fabry–Perot cavities for the same parameter values as in Fig. 2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

σn,mEn,mx,y=-dx0dy0Kx,y,x0,y0En,mx0,y0.
Kx,yξ1,ξ2=jλBexp-2jkαx,yξ1×exp-jπλBDξ12+Aξ22-2ξ1ξ2.
Enx=Hnξx-ρexp-ξ2x2+ηx,σn=expjψ21+2n-jkBαx21-A,
cos ψ=A+D/2=A,
ξ=k sinψ/B,
η=kαx-j+cotψ/2,
ρ=αxB/1-A.
K0tilt=exp2αx2k2Re2cotψ2Reξ-2αx2k2 Recot2ψ2ξ.

Metrics