Abstract

We analyze the waveguide properties of microstructure optical fibers consisting of a silica core surrounded by a single ring of large air holes. Although the fibers can support numerous transverse spatial modes, coupling between these modes even in the presence of large perturbations is prevented for small core dimensions, owing to a large wave-vector mismatch between the lowest-order modes. The result is an optical fiber that can appear single mode with propagation properties that can be achieved only in multimode waveguides.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).
  2. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
    [CrossRef] [PubMed]
  3. S. Barkou, J. Broeng, and A. Bjarklev, Opt. Lett. 24, 46 (1999).
    [CrossRef]
  4. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Opt. Lett. 25, 25 (2000); in Conference on Lasers and Electro-Optics, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1999), postdeadline paper CD-8.
    [CrossRef]
  5. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  6. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, Opt. Lett. 23, 1662 (1998); A. Ferrando, E. Silvestre, J. Miret, P. Andres, and M. Andrés, Opt. Lett. 24, 276 (1999).
    [CrossRef]
  7. T. Monro, D. Richardson, N. Broderick, and P. Bennett, J. Lightwave Technol. 17, 1093 (1999); A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, Opt. Lett. 25, 790 (2000).
    [CrossRef]
  8. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, Mass., 1991);A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  9. D. Yevick and W. Bardyszewiski, Opt. Lett. 173291992; R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, J. Sel. Top. Quantum Electron. 6, 150 (2000).
  10. J. Broeng, S. E. Barkou, and A. Bjarklev, in Optical Fiber Communications Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1999), paper ThG2.
  11. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1995).
  12. H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. J. Garth and C. Pask, J. Opt. Soc. Am. B 9, 243 (1992).
    [CrossRef]
  13. R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. Lett. 24, 308 (1974); Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Opt. Lett. 5, 48 (1980).
    [CrossRef]

2000

1999

1998

1997

1992

1985

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. J. Garth and C. Pask, J. Opt. Soc. Am. B 9, 243 (1992).
[CrossRef]

1974

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. Lett. 24, 308 (1974); Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Opt. Lett. 5, 48 (1980).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1995).

Ashkin, A.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. Lett. 24, 308 (1974); Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Opt. Lett. 5, 48 (1980).
[CrossRef]

Bardyszewiski, W.

Barkou, S.

Barkou, S. E.

J. Broeng, S. E. Barkou, and A. Bjarklev, in Optical Fiber Communications Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1999), paper ThG2.

Bennett, P.

Birks, T. A.

Bjarklev, A.

S. Barkou, J. Broeng, and A. Bjarklev, Opt. Lett. 24, 46 (1999).
[CrossRef]

J. Broeng, S. E. Barkou, and A. Bjarklev, in Optical Fiber Communications Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1999), paper ThG2.

Bjorkholm, J. E.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. Lett. 24, 308 (1974); Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Opt. Lett. 5, 48 (1980).
[CrossRef]

Broderick, N.

Broeng, J.

S. Barkou, J. Broeng, and A. Bjarklev, Opt. Lett. 24, 46 (1999).
[CrossRef]

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

J. Broeng, S. E. Barkou, and A. Bjarklev, in Optical Fiber Communications Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1999), paper ThG2.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
[CrossRef] [PubMed]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, Mass., 1991);A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).

Mogilevtsev, D.

Monro, T.

Ranka, J. K.

Richardson, D.

Russell, P. St. J.

Stentz, A. J.

Stolen, R. H.

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. Lett. 24, 308 (1974); Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Opt. Lett. 5, 48 (1980).
[CrossRef]

Windeler, R. S.

Winful, H. G.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. J. Garth and C. Pask, J. Opt. Soc. Am. B 9, 243 (1992).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).

Yevick, D.

Appl. Phys. Lett.

H. G. Winful, Appl. Phys. Lett. 47, 213 (1985); S. J. Garth and C. Pask, J. Opt. Soc. Am. B 9, 243 (1992).
[CrossRef]

R. H. Stolen, J. E. Bjorkholm, and A. Ashkin, Appl. Phys. Lett. 24, 308 (1974); Y. Fujii, B. S. Kawasaki, K. O. Hill, and D. C. Johnson, Opt. Lett. 5, 48 (1980).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Science

J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, Science 282, 1476 (1998).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N. J., 1995).

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, Boston, Mass., 1991);A. Snyder and J. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).

J. Broeng, S. E. Barkou, and A. Bjarklev, in Optical Fiber Communications Conference, 1999 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1999), paper ThG2.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Simulated microstructure fiber consisting of a 1.7-µm-diameter core surrounded by a ring of 1.4-µm-diameter air holes. (b)Š Electron micrograph image of the inner cladding and core of the air–silica microstructure fiber from Ref. 4.

Fig. 2
Fig. 2

(a) Calculated waveguide GVD contribution (dashed line), material dispersion of bulk silica (dotted curve), and resulting net GVD (solid curve) of the microstructure fiber. The experimentally measured values from Ref. 4 are shown by the circles. (b) Calculated net GVD of the microstructure fiber as the fiber dimensions are scaled for a 1.4-, a 1.7-, and a 4-µm core diameter.

Fig. 3
Fig. 3

Calculated mode profiles and effective indices for the lowest-order modes of the microstructure fiber.

Fig. 4
Fig. 4

Spectrum generated in a 10-cm section of microstructure fiber by use of linearly polarized 100-fs-duration, 895-nm pulses with peak power of 250 W. The second-harmonic component is generated in the orthogonal polarization.

Fig. 5
Fig. 5

Far-field patterns of the spatial modes generated in a 50-cm section of the microstructure fiber through (a) second- and (b) third-harmonic generation of 1065-nm input light.

Metrics