Abstract

A novel adaptive wave-front correction system based on an all-optical feedback interferometer is described. In this system the two-dimensional output fringe intensity from a Mach–Zehnder interferometer with large radial shear is optically fed back to an optically addressed phase-only liquid-crystal spatial light modulator. Consequently, without a separate aberration-free reference wave, the modulator phase approximates the conjugate of the interferometer phase that is directly related to the phase of the input aberrated wave front, so this system is applicable in adaptive optics. We successfully achieved real-time correction of aberrated wave fronts: A diffraction pattern that was seriously distorted because of aberrations was transformed into a diffraction-limited spot immediately after the feedback loop was closed.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, New York, 1998).
  2. D. M. Pepper, C. J. Gaeta, and P. V. Mitchell, in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 585–654.
  3. G. D. Love, J. S. Fender, and S. R. Restaino, Opt. Photon. News 6(10), 16 (1995).
    [CrossRef]
  4. A. D. Fisher and C. Warde, Opt. Lett. 4, 131 (1979).
    [CrossRef] [PubMed]
  5. A. D. Fisher and C. Warde, Opt. Lett. 8, 353 (1983).
    [CrossRef] [PubMed]
  6. A. D. Fisher, Proc. SPIE 551, 102 (1985).
    [CrossRef]
  7. M. A. Vorontsov, V. A. Katulin, and A. F. Naumov, Opt. Commun. 71, 35 (1989).
    [CrossRef]
  8. G. T. Bold, Adaptive Aberration Correction Using Feedback Interferometry, M.Sc. thesis (University of Auckland, Auckland, New Zealand, 1996).
  9. T. H. Barnes, T. Eiju, and K. Matsuda, Opt. Commun. 132, 494 (1996).
    [CrossRef]
  10. A. R. D. Somervell and T. H. Barnes, Opt. Commun. 150, 61 (1998).
    [CrossRef]
  11. T. Shirai, T. H. Barnes, and T. G. Haskell, Opt. Lett. 24, 297 (1999).
    [CrossRef]
  12. M. A. Vorontsov, J. Opt. Soc. Am. A 16, 2567 (1999).
    [CrossRef]
  13. N. Mukohzaka, N. Yoshida, H. Toyoda, Y. Kobayashi, and T. Hara, Appl. Opt. 33, 2804 (1994).
    [CrossRef] [PubMed]

1999

1998

A. R. D. Somervell and T. H. Barnes, Opt. Commun. 150, 61 (1998).
[CrossRef]

1996

T. H. Barnes, T. Eiju, and K. Matsuda, Opt. Commun. 132, 494 (1996).
[CrossRef]

1995

G. D. Love, J. S. Fender, and S. R. Restaino, Opt. Photon. News 6(10), 16 (1995).
[CrossRef]

1994

1989

M. A. Vorontsov, V. A. Katulin, and A. F. Naumov, Opt. Commun. 71, 35 (1989).
[CrossRef]

1985

A. D. Fisher, Proc. SPIE 551, 102 (1985).
[CrossRef]

1983

1979

Barnes, T. H.

T. Shirai, T. H. Barnes, and T. G. Haskell, Opt. Lett. 24, 297 (1999).
[CrossRef]

A. R. D. Somervell and T. H. Barnes, Opt. Commun. 150, 61 (1998).
[CrossRef]

T. H. Barnes, T. Eiju, and K. Matsuda, Opt. Commun. 132, 494 (1996).
[CrossRef]

Bold, G. T.

G. T. Bold, Adaptive Aberration Correction Using Feedback Interferometry, M.Sc. thesis (University of Auckland, Auckland, New Zealand, 1996).

Eiju, T.

T. H. Barnes, T. Eiju, and K. Matsuda, Opt. Commun. 132, 494 (1996).
[CrossRef]

Fender, J. S.

G. D. Love, J. S. Fender, and S. R. Restaino, Opt. Photon. News 6(10), 16 (1995).
[CrossRef]

Fisher, A. D.

Gaeta, C. J.

D. M. Pepper, C. J. Gaeta, and P. V. Mitchell, in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 585–654.

Hara, T.

Haskell, T. G.

Katulin, V. A.

M. A. Vorontsov, V. A. Katulin, and A. F. Naumov, Opt. Commun. 71, 35 (1989).
[CrossRef]

Kobayashi, Y.

Love, G. D.

G. D. Love, J. S. Fender, and S. R. Restaino, Opt. Photon. News 6(10), 16 (1995).
[CrossRef]

Matsuda, K.

T. H. Barnes, T. Eiju, and K. Matsuda, Opt. Commun. 132, 494 (1996).
[CrossRef]

Mitchell, P. V.

D. M. Pepper, C. J. Gaeta, and P. V. Mitchell, in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 585–654.

Mukohzaka, N.

Naumov, A. F.

M. A. Vorontsov, V. A. Katulin, and A. F. Naumov, Opt. Commun. 71, 35 (1989).
[CrossRef]

Pepper, D. M.

D. M. Pepper, C. J. Gaeta, and P. V. Mitchell, in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 585–654.

Restaino, S. R.

G. D. Love, J. S. Fender, and S. R. Restaino, Opt. Photon. News 6(10), 16 (1995).
[CrossRef]

Shirai, T.

Somervell, A. R. D.

A. R. D. Somervell and T. H. Barnes, Opt. Commun. 150, 61 (1998).
[CrossRef]

Toyoda, H.

Tyson, R. K.

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, New York, 1998).

Vorontsov, M. A.

M. A. Vorontsov, J. Opt. Soc. Am. A 16, 2567 (1999).
[CrossRef]

M. A. Vorontsov, V. A. Katulin, and A. F. Naumov, Opt. Commun. 71, 35 (1989).
[CrossRef]

Warde, C.

Yoshida, N.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

M. A. Vorontsov, V. A. Katulin, and A. F. Naumov, Opt. Commun. 71, 35 (1989).
[CrossRef]

T. H. Barnes, T. Eiju, and K. Matsuda, Opt. Commun. 132, 494 (1996).
[CrossRef]

A. R. D. Somervell and T. H. Barnes, Opt. Commun. 150, 61 (1998).
[CrossRef]

Opt. Lett.

Opt. Photon. News

G. D. Love, J. S. Fender, and S. R. Restaino, Opt. Photon. News 6(10), 16 (1995).
[CrossRef]

Proc. SPIE

A. D. Fisher, Proc. SPIE 551, 102 (1985).
[CrossRef]

Other

R. K. Tyson, Principles of Adaptive Optics, 2nd ed. (Academic, New York, 1998).

D. M. Pepper, C. J. Gaeta, and P. V. Mitchell, in Spatial Light Modulator Technology, U. Efron, ed. (Marcel Dekker, New York, 1994), pp. 585–654.

G. T. Bold, Adaptive Aberration Correction Using Feedback Interferometry, M.Sc. thesis (University of Auckland, Auckland, New Zealand, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. Abbreviations are defined in text.

Fig. 2
Fig. 2

Phase-modulation characteristics of the PAL-SLM for a 3.0-V drive voltage.

Fig. 3
Fig. 3

Interference fringes captured by CCD1 (a) without and (b)–(d) with feedback. The drive frequencies applied to the PAL SLM are (b) 1 kHz, (c) 300 Hz, and (d) 50 Hz, with a fixed drive voltage of 3.0 V.

Fig. 4
Fig. 4

Diffraction pattern of the circular aperture captured by CCD2 without feedback. The phase distribution across the aperture is shown by the fringe pattern inside the circle in Fig. 3(a).

Fig. 5
Fig. 5

Diffraction pattern of a circular aperture captured by CCD2 with feedback for a drive voltage of 3.0 V at 300 Hz. The phase distribution across the aperture is shown by the fringe pattern inside the circle in Fig. 3(c).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ioutx,y=A1+V cosϕmodx,y+ϕinx,y,
ϕmodx,y=kGIoutx,y,
cosϕmodx,y+ϕinx,y=1Vϕmodx,ykAG-1.

Metrics