Abstract

We present the results of our time-resolved measurements of hot-carrier luminescence from passively quenched Geiger-mode avalanche photodiodes. In time-correlated photon-counting (TCPC) experiments, hot-carrier luminescence interferes overwhelmingly with the coincidence spectrum, which results in artifacts. This potential problem should be taken into account in setting up TCPC experiments.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
    [CrossRef] [PubMed]
  2. R. Newman, Phys. Rev. 100, 700 (1955).
    [CrossRef]
  3. J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
    [CrossRef]
  4. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 22, pp. 1074–1088.
  5. N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
    [CrossRef]
  6. D. K. Gautam, W. S. Khokle, and K. B. Garg, Solid-State Electron. 31, 219 (1988).
    [CrossRef]
  7. A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, Appl. Phys. Lett. 62, 606 (1993).
    [CrossRef]

1999 (1)

N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
[CrossRef]

1996 (1)

1993 (1)

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, Appl. Phys. Lett. 62, 606 (1993).
[CrossRef]

1992 (1)

J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
[CrossRef]

1988 (1)

D. K. Gautam, W. S. Khokle, and K. B. Garg, Solid-State Electron. 31, 219 (1988).
[CrossRef]

1955 (1)

R. Newman, Phys. Rev. 100, 700 (1955).
[CrossRef]

Akil, N.

N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
[CrossRef]

Bude, J.

J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
[CrossRef]

Charles, J-P.

N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
[CrossRef]

Cova, S.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, Appl. Phys. Lett. 62, 606 (1993).
[CrossRef]

Garg, K. B.

D. K. Gautam, W. S. Khokle, and K. B. Garg, Solid-State Electron. 31, 219 (1988).
[CrossRef]

Gautam, D. K.

D. K. Gautam, W. S. Khokle, and K. B. Garg, Solid-State Electron. 31, 219 (1988).
[CrossRef]

Ghioni, M.

Hoffmann, A.

N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
[CrossRef]

Kerns, D. V.

N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
[CrossRef]

Kerns, S. E.

N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
[CrossRef]

Khokle, W. S.

D. K. Gautam, W. S. Khokle, and K. B. Garg, Solid-State Electron. 31, 219 (1988).
[CrossRef]

Lacaita, A.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, Appl. Phys. Lett. 62, 606 (1993).
[CrossRef]

Mandel, L.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 22, pp. 1074–1088.

Newman, R.

R. Newman, Phys. Rev. 100, 700 (1955).
[CrossRef]

Samori, C.

Sano, N.

J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
[CrossRef]

Spinelli, A.

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, Appl. Phys. Lett. 62, 606 (1993).
[CrossRef]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 22, pp. 1074–1088.

Yoshii, A.

J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
[CrossRef]

Zappa, F.

S. Cova, M. Ghioni, A. Lacaita, C. Samori, and F. Zappa, Appl. Opt. 35, 1956 (1996).
[CrossRef] [PubMed]

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, Appl. Phys. Lett. 62, 606 (1993).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Lacaita, S. Cova, A. Spinelli, and F. Zappa, Appl. Phys. Lett. 62, 606 (1993).
[CrossRef]

IEEE Trans. Electron. Devices (1)

N. Akil, S. E. Kerns, D. V. Kerns, A. Hoffmann, and J-P. Charles, IEEE Trans. Electron. Devices 46, 1022 (1999).
[CrossRef]

Phys. Rev. (1)

R. Newman, Phys. Rev. 100, 700 (1955).
[CrossRef]

Phys. Rev. B (1)

J. Bude, N. Sano, and A. Yoshii, Phys. Rev. B 45, 5848 (1992).
[CrossRef]

Solid-State Electron. (1)

D. K. Gautam, W. S. Khokle, and K. B. Garg, Solid-State Electron. 31, 219 (1988).
[CrossRef]

Other (1)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, 1995), Chap. 22, pp. 1074–1088.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Setup for time-correlated measurement of entangled photons. The squares show different possibilities for overlap of APD imaging paths. The shaded circles are the entangled photon streams, and the larger circles are regions imaged by the APD’s: 1, no overlap; 2, overlap owing to misalignment; 3, inevitable overlap at optimum alignment. TAC, time-to-amplitude converter; MCA, multichannel analyzer.

Fig. 2
Fig. 2

Sample luminescence decay spectrum. We turn off the main experiment by shutting down the pump to emphasize the interfering phenomenon.

Fig. 3
Fig. 3

Voltage dependence of the luminescence decay constants.

Metrics