Abstract

A frequency-swept ultrasonic beam was focused into a biological tissue sample to modulate the laser light passing through the ultrasonic beam inside the tissue. Parallel detection of the speckle field formed by the transmitted laser light was implemented with the source-synchronous-illumination lock-in technique to improve the signal-to-noise ratio. The ultrasound-modulated laser light reflects the local optical and mechanical properties in the ultrasonic beam and can be used for tomographic imaging of the tissue. Sweeping the ultrasonic frequency provides spatial resolution along the ultrasonic axis, which is scalable with the frequency span of the sweep. Two-dimensional images of biological tissue with buried objects were successfully obtained experimentally.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fujimoto and M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).
  2. F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
    [CrossRef]
  3. L.-H. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629 (1995).
    [CrossRef] [PubMed]
  4. L.-H. Wang and X. Zhao, Appl. Opt. 36, 7277 (1997).
    [CrossRef]
  5. M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. 14, 1151 (1997).
    [CrossRef]
  6. S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-Jalmes, Opt. Lett. 24, 181 (1999).
    [CrossRef]
  7. G. Yao and L.-H. Wang, Appl. Opt. 39, 659 (2000).
    [CrossRef]
  8. W. Leutz and G. Maret, Physica B 204, 14 (1995).
    [CrossRef]
  9. L.-H. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
    [CrossRef]
  10. T. A. Whittingham, Imaging 6, 33 (1994).
  11. G. Marquez, L.-H. Wang, S.-P. Lin, J. A. Schwartz, and S. L. Thomsen, Appl. Opt. 37, 798 (1998).
    [CrossRef]

2000 (1)

1999 (1)

1998 (2)

1997 (2)

L.-H. Wang and X. Zhao, Appl. Opt. 36, 7277 (1997).
[CrossRef]

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. 14, 1151 (1997).
[CrossRef]

1995 (2)

1994 (1)

T. A. Whittingham, Imaging 6, 33 (1994).

1993 (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Boccara, A. C.

Brooksby, G. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Genack, A. Z.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. 14, 1151 (1997).
[CrossRef]

Jacques, S. L.

Kempe, M.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. 14, 1151 (1997).
[CrossRef]

Ku, G.

Larionov, M.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. 14, 1151 (1997).
[CrossRef]

Lebec, M.

Leutz, W.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Leveque, S.

Lin, S.-P.

Maret, G.

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Marks, F. A.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Marquez, G.

Saint-Jalmes, H.

Schwartz, J. A.

Thomsen, S. L.

Tomlinson, H. W.

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Wang, L.-H.

Whittingham, T. A.

T. A. Whittingham, Imaging 6, 33 (1994).

Yao, G.

Zaslavsky, D.

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. 14, 1151 (1997).
[CrossRef]

Zhao, X.

Appl. Opt. (3)

Imaging (1)

T. A. Whittingham, Imaging 6, 33 (1994).

J. Opt. Soc. Am. (1)

M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack, J. Opt. Soc. Am. 14, 1151 (1997).
[CrossRef]

Opt. Lett. (3)

Physica B (1)

W. Leutz and G. Maret, Physica B 204, 14 (1995).
[CrossRef]

Proc. SPIE (1)

F. A. Marks, H. W. Tomlinson, and G. W. Brooksby, Proc. SPIE 1888, 500 (1993).
[CrossRef]

Other (1)

J. G. Fujimoto and M. S. Patterson, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup: DL, diode laser; C, CCD camera; U, ultrasonic transducer; PA, power amplifier; T, tissue sample; other abbreviations defined in text.

Fig. 2
Fig. 2

Experimental 2D image of 1.2-cm-thick chicken-breast tissue containing a buried object.

Fig. 3
Fig. 3

(a) 1D images of 1.2-cm-thick chicken-breast tissue with spatial resolutions of 4 and 2 mm along the ultrasonic axis. (b) 1D images of 1.2-cm-thick chicken-breast tissue with a normally incident laser beam and an obliquely incident laser beam at 10°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

fy,τ=bτ-y/υs,
IiIb+Im cosϕ+ϕi,
M=1/2IbI90°-I270°2+I0°-I180°21/2.

Metrics