Abstract

We demonstrate the application of laser-speckle statistics formed by a variable-coherence source illuminating a scattering medium, for determining the scattering parameter μs of a diffusion model for the medium. Furthermore, we apply this technique to visualize laterally localized inhomogeneities embedded within a highly scattering sample.

© 2000 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).
  2. R. A. Sprague, Appl. Opt. 11, 2811 (1972).
    [CrossRef] [PubMed]
  3. S. L. Toh, H. M. Shang, and C. J. Tay, Opt. Lasers Eng. 29, 217 (1998).
    [CrossRef]
  4. C. A. Thompson, K. J. Webb, and A. M. Weiner, Appl. Opt. 36, 3726 (1997).
    [CrossRef] [PubMed]
  5. C. A. Thompson, K. J. Webb, and A. M. Weiner, J. Opt. Soc. Am. A 14, 2269 (1997).
    [CrossRef]
  6. A. F. Fercher, M. Peukert, and E. Roth, Opt. Eng. 25, 731 (1986).
  7. H. Fujii, Med. Biol. Eng. Comput. 32, 302 (1994).
    [CrossRef] [PubMed]
  8. P. Naulleau, D. Dilworth, E. Leith, and J. Lopez, Appl. Opt. 35, 3065 (1996).
    [CrossRef] [PubMed]
  9. M. S. Patterson, B. Chance, and B. C. Wilson, Appl. Opt. 28, 2331 (1989).
    [CrossRef] [PubMed]
  10. J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
  11. E. M. Sevick, J. K. Friscoli, C. L. Burch, and J. R. Lakowicz, Appl. Opt. 33, 3563 (1994).
    [CrossRef]

1998

S. L. Toh, H. M. Shang, and C. J. Tay, Opt. Lasers Eng. 29, 217 (1998).
[CrossRef]

1997

1996

1994

H. Fujii, Med. Biol. Eng. Comput. 32, 302 (1994).
[CrossRef] [PubMed]

E. M. Sevick, J. K. Friscoli, C. L. Burch, and J. R. Lakowicz, Appl. Opt. 33, 3563 (1994).
[CrossRef]

1989

1986

A. F. Fercher, M. Peukert, and E. Roth, Opt. Eng. 25, 731 (1986).

1972

Burch, C. L.

E. M. Sevick, J. K. Friscoli, C. L. Burch, and J. R. Lakowicz, Appl. Opt. 33, 3563 (1994).
[CrossRef]

Chance, B.

Dilworth, D.

Fercher, A. F.

A. F. Fercher, M. Peukert, and E. Roth, Opt. Eng. 25, 731 (1986).

Friscoli, J. K.

E. M. Sevick, J. K. Friscoli, C. L. Burch, and J. R. Lakowicz, Appl. Opt. 33, 3563 (1994).
[CrossRef]

Fujii, H.

H. Fujii, Med. Biol. Eng. Comput. 32, 302 (1994).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Lakowicz, J. R.

E. M. Sevick, J. K. Friscoli, C. L. Burch, and J. R. Lakowicz, Appl. Opt. 33, 3563 (1994).
[CrossRef]

Leith, E.

Lopez, J.

Naulleau, P.

Patterson, M. S.

Peukert, M.

A. F. Fercher, M. Peukert, and E. Roth, Opt. Eng. 25, 731 (1986).

Roth, E.

A. F. Fercher, M. Peukert, and E. Roth, Opt. Eng. 25, 731 (1986).

Sevick, E. M.

E. M. Sevick, J. K. Friscoli, C. L. Burch, and J. R. Lakowicz, Appl. Opt. 33, 3563 (1994).
[CrossRef]

Shang, H. M.

S. L. Toh, H. M. Shang, and C. J. Tay, Opt. Lasers Eng. 29, 217 (1998).
[CrossRef]

Sprague, R. A.

Tay, C. J.

S. L. Toh, H. M. Shang, and C. J. Tay, Opt. Lasers Eng. 29, 217 (1998).
[CrossRef]

Thompson, C. A.

Toh, S. L.

S. L. Toh, H. M. Shang, and C. J. Tay, Opt. Lasers Eng. 29, 217 (1998).
[CrossRef]

Webb, K. J.

Weiner, A. M.

Wilson, B. C.

Appl. Opt.

J. Opt. Soc. Am. A

Med. Biol. Eng. Comput.

H. Fujii, Med. Biol. Eng. Comput. 32, 302 (1994).
[CrossRef] [PubMed]

Opt. Eng.

A. F. Fercher, M. Peukert, and E. Roth, Opt. Eng. 25, 731 (1986).

Opt. Lasers Eng.

S. L. Toh, H. M. Shang, and C. J. Tay, Opt. Lasers Eng. 29, 217 (1998).
[CrossRef]

Other

J. W. Goodman, in Laser Speckle and Related Phenomena, 2nd ed., J. C. Dainty, ed. (Springer-Verlag, Berlin, 1984).

J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Laser-speckle experimental setup for the material characterization experiments.

Fig. 2
Fig. 2

Contrast-ratio data as a function of laser linewidth for two different acrylics. Symbols, experimental data; dashed curves, theoretical fits. The top and bottom curves are for the heavily scattering acrylic with μs=12.5 cm-1. The middle curve is for the less-scattering acrylic with μs=6 cm-1.

Fig. 3
Fig. 3

Geometry of the sample used for the inhomogeneity localization experiments. The imaging domain is approximately 45 mm×36 mm in size.

Fig. 4
Fig. 4

Contrast-ratio difference images for each inhomogeneity at two laser linewidths: (a) void at 5 MHz, (b) void at 17 GHz, (c) heavy scatterer at 5 MHz, (d) heavy scatterer at 17 GHz. The variation in contrast ratio is shown by the color bars.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σIμI=0Sλ1Sλ2Fλ1,λ2dλ1dλ21/20Sλdλ,
Fλ1,λ2=0pLexp-j2πL1λ1-1λ2dL2.

Metrics