Abstract

A pupil-plane filtering technique is applied to data-signal detection in an optical data-storage system that uses a solid immersion lens (SIL) and a four-layered phase-change recording medium. We have confirmed by numerical calculations and experiment that the technique improves signal contrast and makes the contrast less sensitive to the gap width between the bottom surface of the SIL and the top surface of the recording medium. Light that is incident upon the objective lens that is used with the SIL is linearly polarized, and the full vectorial feature of the light is considered in the calculations.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ichimura, S. Hayashi, and G. S. Kino, Appl. Opt. 36, 4339 (1997).
    [CrossRef] [PubMed]
  2. T. D. Milster, J. S. Jo, K. Hirota, and K. Shimura, in Digest of the International Symposium on Optical Memory, Tsukuba, 1998 (Japanese Society of Applied Optics, Tokyo, 1998), paper Pd-15.
  3. T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage in solid immersion lens systems,” Jpn. J. Appl. Phys. (to be published).
  4. D. G. Flagello, T. D. Milster, and A. E. Rosenbluth, J. Opt. Soc. Am. A 13, 53 (1996).
    [CrossRef]
  5. T. D. Milster, J. S. Ko, and K. Hirota, “The roles of propagating and evanescent waves in solid immersion lenses” (to be submitted to Appl. Opt.).

1997 (1)

1996 (1)

Flagello, D. G.

Hayashi, S.

Hirota, K.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage in solid immersion lens systems,” Jpn. J. Appl. Phys. (to be published).

T. D. Milster, J. S. Ko, and K. Hirota, “The roles of propagating and evanescent waves in solid immersion lenses” (to be submitted to Appl. Opt.).

T. D. Milster, J. S. Jo, K. Hirota, and K. Shimura, in Digest of the International Symposium on Optical Memory, Tsukuba, 1998 (Japanese Society of Applied Optics, Tokyo, 1998), paper Pd-15.

Ichimura, I.

Jo, J. S.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage in solid immersion lens systems,” Jpn. J. Appl. Phys. (to be published).

T. D. Milster, J. S. Jo, K. Hirota, and K. Shimura, in Digest of the International Symposium on Optical Memory, Tsukuba, 1998 (Japanese Society of Applied Optics, Tokyo, 1998), paper Pd-15.

Kino, G. S.

Ko, J. S.

T. D. Milster, J. S. Ko, and K. Hirota, “The roles of propagating and evanescent waves in solid immersion lenses” (to be submitted to Appl. Opt.).

Milster, T. D.

D. G. Flagello, T. D. Milster, and A. E. Rosenbluth, J. Opt. Soc. Am. A 13, 53 (1996).
[CrossRef]

T. D. Milster, J. S. Ko, and K. Hirota, “The roles of propagating and evanescent waves in solid immersion lenses” (to be submitted to Appl. Opt.).

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage in solid immersion lens systems,” Jpn. J. Appl. Phys. (to be published).

T. D. Milster, J. S. Jo, K. Hirota, and K. Shimura, in Digest of the International Symposium on Optical Memory, Tsukuba, 1998 (Japanese Society of Applied Optics, Tokyo, 1998), paper Pd-15.

Rosenbluth, A. E.

Shimura, K.

T. D. Milster, J. S. Jo, K. Hirota, and K. Shimura, in Digest of the International Symposium on Optical Memory, Tsukuba, 1998 (Japanese Society of Applied Optics, Tokyo, 1998), paper Pd-15.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage in solid immersion lens systems,” Jpn. J. Appl. Phys. (to be published).

Zhang, Y.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage in solid immersion lens systems,” Jpn. J. Appl. Phys. (to be published).

Appl. Opt. (1)

J. Opt. Soc. Am. A (1)

Other (3)

T. D. Milster, J. S. Jo, K. Hirota, and K. Shimura, in Digest of the International Symposium on Optical Memory, Tsukuba, 1998 (Japanese Society of Applied Optics, Tokyo, 1998), paper Pd-15.

T. D. Milster, J. S. Jo, K. Hirota, K. Shimura, and Y. Zhang, “The nature of the coupling field in optical data storage in solid immersion lens systems,” Jpn. J. Appl. Phys. (to be published).

T. D. Milster, J. S. Ko, and K. Hirota, “The roles of propagating and evanescent waves in solid immersion lenses” (to be submitted to Appl. Opt.).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Configuration of the optics with a hemisphere SIL for pupil-plane filtering: LD, laser diode; CL, collimator; HM, half-mirror; OBJ, objective lens; PD, photodetector. The mask pattern shows that light that is incident upon the regions marked 1 on the mask can be transmitted and that it reached the photodetector. In the regions marked 0, incident light is absorbed.

Fig. 2
Fig. 2

Irradiance distributions of the reflected light in the pupil of the objective lens for two states of the recording medium, the crystalline state IX and the amorphous state IA, and their difference IX-IA. The distributions are (a) calculated and (b) measured results. The air gap between the SIL and the recording medium is 100  nm. Notice that the difference signal in (a) has both positive and negative components that effectively cancel when the integration over the pupil is calculated without the mask.

Fig. 3
Fig. 3

Calculated (a) signal level and (b) contrast dependence on the air gap width between the SIL and the recording medium. The signal levels are normalized by the signal level when all the light energy that is incident upon the medium is reflected and the mask is removed.

Metrics