Abstract

A three-wavelength-based passive quadrature digital phase-demodulation scheme has been developed for readout of fiber-optic extrinsic Fabry–Perot interferometer vibration, acoustic, and strain sensors. This scheme uses a superluminescent diode light source with interference filters in front of the photodiodes and real-time arctan calculation. Quasi-static strain and dynamic vibration sensing with up to an 80-kHz sampling rate is demonstrated. Periodic nonlinearities owing to dephasing with increasing fringe number are corrected for with a suitable algorithm, resulting in significant improvement of the linearity of the sensor characteristics.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. Corke, and D. A. Jackson, Electron. Lett. 20, 209 (1984).
    [CrossRef]
  2. A. Ezbiri and R. P. Tatam, Opt. Lett. 20, 1818 (1995).
    [CrossRef]
  3. K. Creath, in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1988), p. 364.
  4. K. A Murphy, M. A. Gunther, A. M. Vengsarkar, and R. O. Claus, Opt. Lett. 16, 273 (1991).
    [CrossRef] [PubMed]
  5. N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
    [CrossRef]
  6. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
    [CrossRef]
  7. T. Li, R. G. May, A. Wang, and R. O. Claus, Appl. Opt. 36, 8858 (1997).
    [CrossRef]
  8. N. Fürstenau, M. Schmidt, W. Bock, and W. Urbanczyk, Appl. Opt. 37, 663 (1998).
    [CrossRef]

1998 (1)

1997 (2)

T. Li, R. G. May, A. Wang, and R. O. Claus, Appl. Opt. 36, 8858 (1997).
[CrossRef]

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
[CrossRef]

1995 (2)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

A. Ezbiri and R. P. Tatam, Opt. Lett. 20, 1818 (1995).
[CrossRef]

1991 (1)

1984 (1)

A. D. Kersey, M. Corke, and D. A. Jackson, Electron. Lett. 20, 209 (1984).
[CrossRef]

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

Bock, W.

Claus, R. O.

Corke, M.

A. D. Kersey, M. Corke, and D. A. Jackson, Electron. Lett. 20, 209 (1984).
[CrossRef]

Creath, K.

K. Creath, in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1988), p. 364.

Ezbiri, A.

Fürstenau, N.

N. Fürstenau, M. Schmidt, W. Bock, and W. Urbanczyk, Appl. Opt. 37, 663 (1998).
[CrossRef]

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
[CrossRef]

Goetze, W.

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

Gunther, M. A.

Horack, H.

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
[CrossRef]

Jackson, D. A.

A. D. Kersey, M. Corke, and D. A. Jackson, Electron. Lett. 20, 209 (1984).
[CrossRef]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. Corke, and D. A. Jackson, Electron. Lett. 20, 209 (1984).
[CrossRef]

Li, T.

May, R. G.

Murphy, K. A

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

Schmidt, M.

N. Fürstenau, M. Schmidt, W. Bock, and W. Urbanczyk, Appl. Opt. 37, 663 (1998).
[CrossRef]

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
[CrossRef]

Schmidt, W.

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
[CrossRef]

Tatam, R. P.

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

Urbanczyk, W.

Vengsarkar, A. M.

Wang, A.

Appl. Opt. (2)

Electron. Lett. (1)

A. D. Kersey, M. Corke, and D. A. Jackson, Electron. Lett. 20, 209 (1984).
[CrossRef]

IEE Proc. Optoelectron. (1)

N. Fürstenau, M. Schmidt, H. Horack, W. Goetze, and W. Schmidt, IEE Proc. Optoelectron. 144, 134 (1997).
[CrossRef]

Opt. Lett. (2)

Smart Mater. Struct. (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, Smart Mater. Struct. 4, 240 (1995).
[CrossRef]

Other (1)

K. Creath, in Progress in Optics XXVI, E. Wolf, ed. (Elsevier, Amsterdam, 1988), p. 364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the three-wavelength EFPI sensor system. The insets show details of the EFPI-V and EFPI-S sensing elements. R5232, serial port for downloading soft-ware; FC-PC, physical contact single-mode connectors. See text for other definitions.

Fig. 2
Fig. 2

Quadrature output signals U1, U2, and U3 of the EFPI-S over 0.5  s, as obtained with a periodic strain of period T=0.5 s.

Fig. 3
Fig. 3

Calculated phase (calibrated as EFPI gap variation) with real-time demodulation of the signals shown in Fig.  2 and with off-line dephasing correction versus resistive strain-gauge readout. Insets: phase residuals after linear regression, plotted versus time (with the time scale corresponding to that of Fig.  2).

Fig. 4
Fig. 4

Real-time demodulation of EFPI-V signals (cali-brated as EFPI gap variation) obtained after short sensor excitation by delta function (shock) and continuous off-line arctan calculation by use of original interference signals. Insets: signals with short time intervals at the beginning and the end of fiber vibration. The step line in the top inset reveals real-time discretization effects that are due to the use of arctan lookup table. The vibration frequency from the insets is f1=133 Hz, in agreement with theory.5

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Uit=U0R1+R21-μiΦicosΦit+ΔΦ2i
Φ=arctanU1-U3U1+U3-2U2fδΔΦij±mπ,
fδΔΦij=tanπ4+mπΔλ2λ2.

Metrics