Abstract

The ionic self-assembly monolayer process is a novel technique that has already been used to deposit ultrathin films on glass, polymer, and silicon substrates of different sizes and shapes. This technique is presented as a new tool with which to apply coatings on optical fibers. A nanometer-scale interferometric cavity was built up at the end of an optical fiber with discrete thickness increments of 4.75  nm for a total thickness of 1 μm. Theoretical and experimental aspects of the nanometer-scale Fabry–Perot cavity are described, and both theoretical and experimental results show good agreement.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, Fiber Optic Smart Structures (Wiley Interscience, New York, 1994).
  2. C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992).
    [CrossRef]
  3. F. Mitschke, Opt. Lett. 14, 967 (1989).
    [CrossRef] [PubMed]
  4. Y. Liu, A. Wang, and R. O. Claus, J. Phys. Chem. B 101, 1385 (1997).
    [CrossRef]
  5. G. Decher and J. Schmidt, Prog. Colloid. Polym. Sci. 89, 160 (1992).
    [CrossRef]
  6. Y. Liu, R. O. Claus, Y.-X. Wang, W. Zhao, and K. Lenahan, presented at the Materials Research Society Meeting, Boston, December 1998.
  7. Y. Liu, Y.-X. Wang, and R. O. Claus, Chem. Phys. Lett. 298, 315 (1998).
    [CrossRef]
  8. J. Dakin and B. Culshaw, Optical Fiber Sensors (Artech House, Norwood, Mass., 1988), Vol. 1, p. 156.

1998 (1)

Y. Liu, Y.-X. Wang, and R. O. Claus, Chem. Phys. Lett. 298, 315 (1998).
[CrossRef]

1997 (1)

Y. Liu, A. Wang, and R. O. Claus, J. Phys. Chem. B 101, 1385 (1997).
[CrossRef]

1992 (2)

G. Decher and J. Schmidt, Prog. Colloid. Polym. Sci. 89, 160 (1992).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992).
[CrossRef]

1989 (1)

Atkins, R. A.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992).
[CrossRef]

Claus, R. O.

Y. Liu, Y.-X. Wang, and R. O. Claus, Chem. Phys. Lett. 298, 315 (1998).
[CrossRef]

Y. Liu, A. Wang, and R. O. Claus, J. Phys. Chem. B 101, 1385 (1997).
[CrossRef]

Y. Liu, R. O. Claus, Y.-X. Wang, W. Zhao, and K. Lenahan, presented at the Materials Research Society Meeting, Boston, December 1998.

Culshaw, B.

J. Dakin and B. Culshaw, Optical Fiber Sensors (Artech House, Norwood, Mass., 1988), Vol. 1, p. 156.

Dakin, J.

J. Dakin and B. Culshaw, Optical Fiber Sensors (Artech House, Norwood, Mass., 1988), Vol. 1, p. 156.

Decher, G.

G. Decher and J. Schmidt, Prog. Colloid. Polym. Sci. 89, 160 (1992).
[CrossRef]

Gibler, W. N.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992).
[CrossRef]

Lee, C. E.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992).
[CrossRef]

Lenahan, K.

Y. Liu, R. O. Claus, Y.-X. Wang, W. Zhao, and K. Lenahan, presented at the Materials Research Society Meeting, Boston, December 1998.

Liu, Y.

Y. Liu, Y.-X. Wang, and R. O. Claus, Chem. Phys. Lett. 298, 315 (1998).
[CrossRef]

Y. Liu, A. Wang, and R. O. Claus, J. Phys. Chem. B 101, 1385 (1997).
[CrossRef]

Y. Liu, R. O. Claus, Y.-X. Wang, W. Zhao, and K. Lenahan, presented at the Materials Research Society Meeting, Boston, December 1998.

Mitschke, F.

Schmidt, J.

G. Decher and J. Schmidt, Prog. Colloid. Polym. Sci. 89, 160 (1992).
[CrossRef]

Taylor, H. F.

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992).
[CrossRef]

Udd, E.

E. Udd, Fiber Optic Smart Structures (Wiley Interscience, New York, 1994).

Wang, A.

Y. Liu, A. Wang, and R. O. Claus, J. Phys. Chem. B 101, 1385 (1997).
[CrossRef]

Wang, Y.-X.

Y. Liu, Y.-X. Wang, and R. O. Claus, Chem. Phys. Lett. 298, 315 (1998).
[CrossRef]

Y. Liu, R. O. Claus, Y.-X. Wang, W. Zhao, and K. Lenahan, presented at the Materials Research Society Meeting, Boston, December 1998.

Zhao, W.

Y. Liu, R. O. Claus, Y.-X. Wang, W. Zhao, and K. Lenahan, presented at the Materials Research Society Meeting, Boston, December 1998.

Chem. Phys. Lett. (1)

Y. Liu, Y.-X. Wang, and R. O. Claus, Chem. Phys. Lett. 298, 315 (1998).
[CrossRef]

J. Lightwave Technol. (1)

C. E. Lee, W. N. Gibler, R. A. Atkins, and H. F. Taylor, J. Lightwave Technol. 10, 1376 (1992).
[CrossRef]

J. Phys. Chem. B (1)

Y. Liu, A. Wang, and R. O. Claus, J. Phys. Chem. B 101, 1385 (1997).
[CrossRef]

Opt. Lett. (1)

Prog. Colloid. Polym. Sci. (1)

G. Decher and J. Schmidt, Prog. Colloid. Polym. Sci. 89, 160 (1992).
[CrossRef]

Other (3)

Y. Liu, R. O. Claus, Y.-X. Wang, W. Zhao, and K. Lenahan, presented at the Materials Research Society Meeting, Boston, December 1998.

J. Dakin and B. Culshaw, Optical Fiber Sensors (Artech House, Norwood, Mass., 1988), Vol. 1, p. 156.

E. Udd, Fiber Optic Smart Structures (Wiley Interscience, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

ISAM schematic for buildup of multilayer assemblies by consecutive adsorption of anionic- and cationic-molecule-based polyelectrolytes. After the clean substrate is treated so that an appropriate charged surface (negative in the figure) is obtained, the substrate is immersed in solutions containing the cationic and anionic polyelectrolytes, thus building up the coating monolayer by monolayer. Reversing the surface charge at each dipping step allows adsorption of each monolayer. The symbols in Fig.  1 are idealized and are not intended to represent exactly the conformation of the polyelectrolyte chains.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Thin-film interferometric cavity.

Fig. 4
Fig. 4

Experimental and theoretical results of the optical power reflected by the nanointerferometric cavity as the number of bilayers increases.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R1=n1-n22n1+n22,R2=n2-n32n2+n32,
RFP=[R1+R21-A12exp-4αd-2R1R21-A1exp-2αdcosϕ][1+R1R2exp-4αd-2R1R2exp-2αdcosϕ],
Φ=4πn2dλ,

Metrics