Abstract

We report the development of ultraviolet filtered Rayleigh scattering as a diagnostic tool for measurements of gas properties. A frequency-tripled narrow-linewidth Ti:sapphire laser illuminates a sample, and Rayleigh scattered light is imaged through a mercury-vapor absorption filter. Working in the ultraviolet improves the signal-to-noise ratio compared with that previously obtained in the visible as the result of an enhanced scattering cross section as well as the nearly ideal properties of the mercury filter. Tuning the laser through the absorption notch of the filter is a means of probing the scattering line shape, which contains temperature information. Temperature measurements of air are shown to have uncertainties of less than 3%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1996).
  2. E. B. Cummings, Opt. Lett. 19, 1361 (1994).
    [CrossRef] [PubMed]
  3. D. Hoffman, K. U. Munch, and A. Leipertz, Opt. Lett. 21, 525 (1996).
    [CrossRef] [PubMed]
  4. G. S. Elliot, M. Samimy, and S. A. Arnette, Exp. Fluids 18, 107 (1994).
  5. P. Andresen and P. Golz, Appl. Opt. 35, 6054 (1996).
    [CrossRef]
  6. S. H. Blooom, P. A. Searcy, K. Choi, R. Kremer, and E. Korevaar, Opt. Lett. 18, 244 (1993).
    [CrossRef]
  7. H. Shimizu, S. A. Lee, and C. Y. She, Appl. Opt. 25, 1460 (1986).
    [CrossRef]
  8. N. Finkelstein, “An ultraviolet laser source and spectral filters for non-intrusive laser based diagnostics,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1997).
  9. G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).
  10. D. R. Bates, Planet. Space Sci. 32, 785 (1984).
    [CrossRef]

1996 (2)

1994 (2)

E. B. Cummings, Opt. Lett. 19, 1361 (1994).
[CrossRef] [PubMed]

G. S. Elliot, M. Samimy, and S. A. Arnette, Exp. Fluids 18, 107 (1994).

1993 (1)

1986 (1)

1984 (1)

D. R. Bates, Planet. Space Sci. 32, 785 (1984).
[CrossRef]

1974 (1)

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Andresen, P.

Arnette, S. A.

G. S. Elliot, M. Samimy, and S. A. Arnette, Exp. Fluids 18, 107 (1994).

Bates, D. R.

D. R. Bates, Planet. Space Sci. 32, 785 (1984).
[CrossRef]

Blooom, S. H.

Boley, C. D.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Choi, K.

Cummings, E. B.

Desai, R. C.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Elliot, G. S.

G. S. Elliot, M. Samimy, and S. A. Arnette, Exp. Fluids 18, 107 (1994).

Finkelstein, N.

N. Finkelstein, “An ultraviolet laser source and spectral filters for non-intrusive laser based diagnostics,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1997).

Forkey, J. N.

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1996).

Golz, P.

Hoffman, D.

Korevaar, E.

Kremer, R.

Lee, S. A.

Leipertz, A.

Munch, K. U.

Samimy, M.

G. S. Elliot, M. Samimy, and S. A. Arnette, Exp. Fluids 18, 107 (1994).

Searcy, P. A.

She, C. Y.

Shimizu, H.

Tenti, G.

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Appl. Opt. (2)

Can. J. Phys. (1)

G. Tenti, C. D. Boley, and R. C. Desai, Can. J. Phys. 52, 285 (1974).

Exp. Fluids (1)

G. S. Elliot, M. Samimy, and S. A. Arnette, Exp. Fluids 18, 107 (1994).

Opt. Lett. (3)

Planet. Space Sci. (1)

D. R. Bates, Planet. Space Sci. 32, 785 (1984).
[CrossRef]

Other (2)

N. Finkelstein, “An ultraviolet laser source and spectral filters for non-intrusive laser based diagnostics,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1997).

J. N. Forkey, “Development and demonstration of filtered Rayleigh scattering—a laser based flow diagnostic for planar measurements of velocity, temperature, and pressure,” Ph.D. dissertation (Princeton University, Princeton, N.J., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Spectral overlap of the scattered light with the filter transmission profile at two laser frequencies, f1 and f2. The scattered light has two components, a broadband Rayleigh–Brillouin component and a narrow-band background component. (b) Tuning the laser through the absorption notch yields the FRS signal as a function of frequency. A model is used to fit the FRS data for gas properties.

Fig. 2
Fig. 2

Ultraviolet FRS data from air at T=295±2 K and P=50 Torr (open diamonds). The reference frequency axis data (crosses) are also shown, as well as model fits for air at T=250, 300, 350  K and P=50 Torr. The fitting program returned T=304±10 K.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σ=32π3n-12/3 λ4N26+3ρ0/6-7ρ0,

Metrics