Abstract

Single terrylene molecules embedded in microscopic p-terphenyl crystals are identified with the technique of fluorescence excitation spectroscopy. By use of the architecture of a scanning-probe microscope at T=1.4 K, a single molecule is scanned through an excitation laser beam while the fluorescence signal is recorded. In this manner we have mapped the intensity distribution in a one-dimensional optical standing wave, demonstrating the potential of a single molecule as a nanometric probe. We discuss future experiments aimed at combining the high spatial and spectral sensitivity of a single molecule.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription