Abstract

We present a novel fluid-velocimetry technique based on speckle interferometry. The light scattered from an illuminated plane is recorded with a CCD camera at the same time as a speckled reference beam. Substraction of two nonsimultaneous frames provides information about the velocity field for an out-of-plane component. An application to a Rayleigh–Bénard convective flow is given.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Grant, Proc. Inst. Mech. Eng. 211, 55 (1997).
  2. M. P. Arroyo and C. A. Greated, Meas. Sci. Technol. 2, 1181 (1991).
    [Crossref]
  3. A. K. Prasad and R. J. Adrian, Exp. Fluids 15, 49 (1993).
    [Crossref]
  4. N. Andrés, M. P. Arroyo, and M. Quintanilla, Appl. Opt. 36, 6997 (1997)N. Andrés, M. P. Arroyo, H. Hinrichs, K. Hinsch, and M. Quintanilla, Proc. Inst. Mech. Eng. C 451, 1 (1998).
    [Crossref]
  5. A. E. Ennos, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), Chap. 6.
  6. M. P. Arroyo and J. M. Savirón, J. Fluid Mech. 235, 325 (1992).
    [Crossref]

1997 (2)

1993 (1)

A. K. Prasad and R. J. Adrian, Exp. Fluids 15, 49 (1993).
[Crossref]

1992 (1)

M. P. Arroyo and J. M. Savirón, J. Fluid Mech. 235, 325 (1992).
[Crossref]

1991 (1)

M. P. Arroyo and C. A. Greated, Meas. Sci. Technol. 2, 1181 (1991).
[Crossref]

Adrian, R. J.

A. K. Prasad and R. J. Adrian, Exp. Fluids 15, 49 (1993).
[Crossref]

Andrés, N.

Arroyo, M. P.

Ennos, A. E.

A. E. Ennos, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), Chap. 6.

Grant, I.

I. Grant, Proc. Inst. Mech. Eng. 211, 55 (1997).

Greated, C. A.

M. P. Arroyo and C. A. Greated, Meas. Sci. Technol. 2, 1181 (1991).
[Crossref]

Prasad, A. K.

A. K. Prasad and R. J. Adrian, Exp. Fluids 15, 49 (1993).
[Crossref]

Quintanilla, M.

Savirón, J. M.

M. P. Arroyo and J. M. Savirón, J. Fluid Mech. 235, 325 (1992).
[Crossref]

Appl. Opt. (1)

Exp. Fluids (1)

A. K. Prasad and R. J. Adrian, Exp. Fluids 15, 49 (1993).
[Crossref]

J. Fluid Mech. (1)

M. P. Arroyo and J. M. Savirón, J. Fluid Mech. 235, 325 (1992).
[Crossref]

Meas. Sci. Technol. (1)

M. P. Arroyo and C. A. Greated, Meas. Sci. Technol. 2, 1181 (1991).
[Crossref]

Proc. Inst. Mech. Eng. (1)

I. Grant, Proc. Inst. Mech. Eng. 211, 55 (1997).

Other (1)

A. E. Ennos, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for measuring velocities with DSPI (top view): BS, beam splitter; EMS, electromechanical shutter; L1, expanding lens; Lc, cylindrical lens; L2, collimating lens.

Fig. 2
Fig. 2

DSPI results from the rotation of a fluidlike object: (a) specklegram, (b) speckle interferogram.

Fig. 3
Fig. 3

Speckle interferograms from the application of DSPI to a convective flow with time intervals of (a) ΔT=66.6 ms, (b) ΔT=133.2 ms.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I1x,y=Io+Ir+2IoIrcosϕr-ϕo,
I2x,y=Io+Ir+2IoIrcosϕr-ϕo+Δϕo,
Δϕo=K·VΔT,
I=I1-I2=4IoIrsinϕr-ϕo-Δϕo/2sinΔϕo/2.
Im=4IoIrsinΔϕo/2,
Δϕo=2m+1π,m=0,±1,±2,,
VK=2m+1π/KΔT,

Metrics