Abstract

We propose a new method for the formation of light-induced transient gratings in microwave-biased semiconductor crystals that exhibit a negative differential resistivity. Nonuniform heating of the electron gas in alternating electric fields induces spatially periodic modulation of the refractive index with spacing that is tunable by the external field frequency. Numerical simulations performed on a bulk GaAs sample prove that transient parametric gratings of both free-carrier and electro-optic origin can be triggered by a spatially modulated light pattern or by uniform photoexcitation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. D. Nolte, ed., Photorefractive Effects and Materials (Kluver Academic, Dordrecht, The Netherlands, 1995).
    [Crossref]
  2. Q. N. Wang, R. M. Brubaker, and D. D. Nolte, J. Opt. Soc. Am. B 11, 1773 (1994).
    [Crossref]
  3. M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, Phys. Rev. Lett. 77, 4249 (1996).
    [Crossref] [PubMed]
  4. M. Segev, B. Collings, and D. Abraham, Phys. Rev. Lett. 76, 3798 (1996).
    [Crossref] [PubMed]
  5. L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
    [Crossref]
  6. L. Suba?ius, E. Starikov, P. Shiktorov, V. Gružinskis, and K. Jarašiu?nas, J. Opt. Soc. Am. B 15, 2045 (1998).
    [Crossref]
  7. K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

1998 (1)

1997 (1)

L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
[Crossref]

1996 (2)

M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, Phys. Rev. Lett. 77, 4249 (1996).
[Crossref] [PubMed]

M. Segev, B. Collings, and D. Abraham, Phys. Rev. Lett. 76, 3798 (1996).
[Crossref] [PubMed]

1995 (1)

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

1994 (1)

Abraham, D.

M. Segev, B. Collings, and D. Abraham, Phys. Rev. Lett. 76, 3798 (1996).
[Crossref] [PubMed]

Brubaker, M.

M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, Phys. Rev. Lett. 77, 4249 (1996).
[Crossref] [PubMed]

Brubaker, R. M.

Collings, B.

M. Segev, B. Collings, and D. Abraham, Phys. Rev. Lett. 76, 3798 (1996).
[Crossref] [PubMed]

Gružinskis, V.

L. Suba?ius, E. Starikov, P. Shiktorov, V. Gružinskis, and K. Jarašiu?nas, J. Opt. Soc. Am. B 15, 2045 (1998).
[Crossref]

L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
[Crossref]

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

Jarašiu¯nas, K.

L. Suba?ius, E. Starikov, P. Shiktorov, V. Gružinskis, and K. Jarašiu?nas, J. Opt. Soc. Am. B 15, 2045 (1998).
[Crossref]

L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
[Crossref]

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

Melloch, M. R.

M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, Phys. Rev. Lett. 77, 4249 (1996).
[Crossref] [PubMed]

Nolte, D. D.

M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, Phys. Rev. Lett. 77, 4249 (1996).
[Crossref] [PubMed]

Q. N. Wang, R. M. Brubaker, and D. D. Nolte, J. Opt. Soc. Am. B 11, 1773 (1994).
[Crossref]

Segev, M.

M. Segev, B. Collings, and D. Abraham, Phys. Rev. Lett. 76, 3798 (1996).
[Crossref] [PubMed]

Shiktorov, P.

L. Suba?ius, E. Starikov, P. Shiktorov, V. Gružinskis, and K. Jarašiu?nas, J. Opt. Soc. Am. B 15, 2045 (1998).
[Crossref]

L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
[Crossref]

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

Starikov, E.

L. Suba?ius, E. Starikov, P. Shiktorov, V. Gružinskis, and K. Jarašiu?nas, J. Opt. Soc. Am. B 15, 2045 (1998).
[Crossref]

L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
[Crossref]

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

Subacius, L.

L. Suba?ius, E. Starikov, P. Shiktorov, V. Gružinskis, and K. Jarašiu?nas, J. Opt. Soc. Am. B 15, 2045 (1998).
[Crossref]

L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
[Crossref]

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

Valušis, G.

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

Wang, Q. N.

M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, Phys. Rev. Lett. 77, 4249 (1996).
[Crossref] [PubMed]

Q. N. Wang, R. M. Brubaker, and D. D. Nolte, J. Opt. Soc. Am. B 11, 1773 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Lith. Phys. J. (1)

K. Jarašiu?nas, V. Gružinskis, P. Shiktorov, E. Starikov, L. Suba?ius, and G. Valušis, Lith. Phys. J. 35, 426 (1995).

Phys. Rev. B (1)

L. Suba?ius, V. Gružinskis, E. Starikov, P. Shiktorov, and K. Jarašiu?nas, Phys. Rev. B 55, 12844 (1997).
[Crossref]

Phys. Rev. Lett. (2)

M. Brubaker, Q. N. Wang, D. D. Nolte, and M. R. Melloch, Phys. Rev. Lett. 77, 4249 (1996).
[Crossref] [PubMed]

M. Segev, B. Collings, and D. Abraham, Phys. Rev. Lett. 76, 3798 (1996).
[Crossref] [PubMed]

Other (1)

D. D. Nolte, ed., Photorefractive Effects and Materials (Kluver Academic, Dordrecht, The Netherlands, 1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Evolution of the spatial distribution of 1, the internal electric field; 2, the concentration of electrons N; and 3, the concentration of holes P, calculated by the HD model Eext=Em, with Em=8 kV/cm and f=20 GHz under excitation with a light-interference pattern with Λ=15 μm, M=1.

Fig. 2
Fig. 2

Spatial profiles of the internal field Eint and the N and P concentrations, calculated for M=0 by use of the Monte Carlo particle technique (dotted curves) and M=0.001 by use of HD model (solid curves). Results are given for f=5 GHz and f=10 GHz with Eext=Em=8 kV/cm.

Fig. 3
Fig. 3

Evolution of the amplitude of the first spatial Fourier harmonic of the SC field E1 and the electron N1 and hole P1 concentrations during one period of the mw field with Em=8 kV/cm and f=10 GHz. The values of the modulation of the refractive index associated with FC and EO effects are reported on the right-hand scale.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N/t=G-R-Nv/x,v/t=eE/m*-vνv-vv/x-N-1NQv/x,ϵ/t=eEv-ϵ-ϵ0νϵ-vϵ/x-N-1NQϵ/x,

Metrics