Abstract

Suppression of the multiphoton fluorescence contribution to the hyper-Rayleigh (second-order nonlinear optical) scattering signal was recently achieved by intrinsic demodulation of the fluorescence at high amplitude-modulation (AM) frequencies [Olbrechts et al., Rev.  Sci.  Instrum.  69, 2233 (1998)]. These high AM frequencies were obtained from the high harmonic content in the Fourier spectrum of a repetitive train of femtosecond pulses from a Ti:sapphire laser emitting at 800  nm. We have used a femtosecond parametric oscillator to shift the fundamental wavelength to 1.3 μm. By further improving the detection electronics, we can now obtain fluorescence suppression at AM frequencies up to 600  MHz. Fluorescence-free hyperpolarizability values were obtained for fluorescent dipolar compounds as well as for an ionic fluorophore. The results also indicate that shifting the fundamental wavelength to the near infrared only is not a general solution to the multiphoton fluorescence problem in hyper-Rayleigh scattering.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991).
    [CrossRef] [PubMed]
  2. K. Clays and A. Persoons, Rev. Sci. Instrum. 63, 3285 (1992).
    [CrossRef]
  3. K. Clays, A. Persoons, and L. De Maeyer, in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Vol. 3, p. 455.
  4. E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, in Polymers for Second-Order Nonlinear Optics, Vol. 601 of American Chemical Society Symposium Series (American Chemical Society, Washington, D.C., 1995), p. 82.
    [CrossRef]
  5. M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
    [CrossRef]
  6. N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
    [CrossRef]
  7. O. F. J. Noordman and N. F. van Hulst, Chem. Phys. Lett. 253, 145 (1996).
    [CrossRef]
  8. S. Stadler, G. Bourhill, and C. Braüchle, J. Phys. Chem. 100, 6927 (1996).
    [CrossRef]
  9. M. A. Pauley and C. H. Wang, Chem. Phys. Lett. 280, 544 (1997).
    [CrossRef]
  10. G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, Rev. Sci. Instrum. 69, 2233 (1998).
    [CrossRef]
  11. L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
    [CrossRef]
  12. S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
    [CrossRef]
  13. R. A. Huijts, J. N. Louwen, and L. W. Jenneskens, Trends Chem. Phys. 2, 39 (1992).
  14. G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
    [CrossRef]

1998 (1)

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, Rev. Sci. Instrum. 69, 2233 (1998).
[CrossRef]

1997 (1)

M. A. Pauley and C. H. Wang, Chem. Phys. Lett. 280, 544 (1997).
[CrossRef]

1996 (3)

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

O. F. J. Noordman and N. F. van Hulst, Chem. Phys. Lett. 253, 145 (1996).
[CrossRef]

S. Stadler, G. Bourhill, and C. Braüchle, J. Phys. Chem. 100, 6927 (1996).
[CrossRef]

1995 (2)

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

1992 (2)

R. A. Huijts, J. N. Louwen, and L. W. Jenneskens, Trends Chem. Phys. 2, 39 (1992).

K. Clays and A. Persoons, Rev. Sci. Instrum. 63, 3285 (1992).
[CrossRef]

1991 (2)

K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991).
[CrossRef] [PubMed]

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

1988 (1)

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Bourhill, G.

S. Stadler, G. Bourhill, and C. Braüchle, J. Phys. Chem. 100, 6927 (1996).
[CrossRef]

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

Braüchle, C.

S. Stadler, G. Bourhill, and C. Braüchle, J. Phys. Chem. 100, 6927 (1996).
[CrossRef]

Bräuchle, C.

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

Brédas, J.-L.

E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, in Polymers for Second-Order Nonlinear Optics, Vol. 601 of American Chemical Society Symposium Series (American Chemical Society, Washington, D.C., 1995), p. 82.
[CrossRef]

Cheng, L.-T.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

Chi, L. F.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Cho, B. R.

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

Clays, K.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, Rev. Sci. Instrum. 69, 2233 (1998).
[CrossRef]

K. Clays and A. Persoons, Rev. Sci. Instrum. 63, 3285 (1992).
[CrossRef]

K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991).
[CrossRef] [PubMed]

K. Clays, A. Persoons, and L. De Maeyer, in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Vol. 3, p. 455.

E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, in Polymers for Second-Order Nonlinear Optics, Vol. 601 of American Chemical Society Symposium Series (American Chemical Society, Washington, D.C., 1995), p. 82.
[CrossRef]

de Jonge, R.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

De Maeyer, L.

K. Clays, A. Persoons, and L. De Maeyer, in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Vol. 3, p. 455.

Dehu, C.

E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, in Polymers for Second-Order Nonlinear Optics, Vol. 601 of American Chemical Society Symposium Series (American Chemical Society, Washington, D.C., 1995), p. 82.
[CrossRef]

Dietrich, R.

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

Drosch, D.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Flipse, M. C.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

Grahn, W.

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

Hendrickx, E.

E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, in Polymers for Second-Order Nonlinear Optics, Vol. 601 of American Chemical Society Symposium Series (American Chemical Society, Washington, D.C., 1995), p. 82.
[CrossRef]

Huijts, R. A.

R. A. Huijts, J. N. Louwen, and L. W. Jenneskens, Trends Chem. Phys. 2, 39 (1992).

Jenneskens, L. W.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

R. A. Huijts, J. N. Louwen, and L. W. Jenneskens, Trends Chem. Phys. 2, 39 (1992).

Jeon, S.-J.

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

Jeoung, S. C.

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

Kang, T.-I.

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

Kim, D.

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

Louwen, J. N.

R. A. Huijts, J. N. Louwen, and L. W. Jenneskens, Trends Chem. Phys. 2, 39 (1992).

Marder, S. R.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

Marowsky, G.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Marsman, A. W.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

Meredith, G. R.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

Möbius, D.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Noordman, O. F. J.

O. F. J. Noordman and N. F. van Hulst, Chem. Phys. Lett. 253, 145 (1996).
[CrossRef]

Olbrechts, G.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, Rev. Sci. Instrum. 69, 2233 (1998).
[CrossRef]

Pauley, M. A.

M. A. Pauley and C. H. Wang, Chem. Phys. Lett. 280, 544 (1997).
[CrossRef]

Pawlik, A.

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

Persoons, A.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, Rev. Sci. Instrum. 69, 2233 (1998).
[CrossRef]

K. Clays and A. Persoons, Rev. Sci. Instrum. 63, 3285 (1992).
[CrossRef]

K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991).
[CrossRef] [PubMed]

K. Clays, A. Persoons, and L. De Maeyer, in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Vol. 3, p. 455.

E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, in Polymers for Second-Order Nonlinear Optics, Vol. 601 of American Chemical Society Symposium Series (American Chemical Society, Washington, D.C., 1995), p. 82.
[CrossRef]

Rieger, B.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Rikken, G.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

Shen, Y. R.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Song, N. W.

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

Stadler, S.

S. Stadler, G. Bourhill, and C. Braüchle, J. Phys. Chem. 100, 6927 (1996).
[CrossRef]

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

Steinhoff, R.

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

Stevenson, S. H.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

Strobbe, R.

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, Rev. Sci. Instrum. 69, 2233 (1998).
[CrossRef]

Tam, W.

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

van Hulst, N. F.

O. F. J. Noordman and N. F. van Hulst, Chem. Phys. Lett. 253, 145 (1996).
[CrossRef]

van Walree, C. A.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

Wang, C. H.

M. A. Pauley and C. H. Wang, Chem. Phys. Lett. 280, 544 (1997).
[CrossRef]

Woudenberg, R. H.

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

Chem. Phys. Lett. (6)

M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van Walree, and L. W. Jenneskens, Chem. Phys. Lett. 245, 297 (1995).
[CrossRef]

N. W. Song, T.-I. Kang, S. C. Jeoung, S.-J. Jeon, B. R. Cho, and D. Kim, Chem. Phys. Lett. 261, 307 (1996).
[CrossRef]

O. F. J. Noordman and N. F. van Hulst, Chem. Phys. Lett. 253, 145 (1996).
[CrossRef]

M. A. Pauley and C. H. Wang, Chem. Phys. Lett. 280, 544 (1997).
[CrossRef]

S. Stadler, R. Dietrich, G. Bourhill, C. Bräuchle, A. Pawlik, and W. Grahn, Chem. Phys. Lett. 247, 271 (1995).
[CrossRef]

G. Marowsky, L. F. Chi, D. Möbius, R. Steinhoff, Y. R. Shen, D. Drosch, and B. Rieger, Chem. Phys. Lett. 147, 420 (1988).
[CrossRef]

J. Phys. Chem. (2)

L.-T. Cheng, W. Tam, S. H. Stevenson, G. R. Meredith, G. Rikken, and S. R. Marder, J. Phys. Chem. 95, 10631 (1991).
[CrossRef]

S. Stadler, G. Bourhill, and C. Braüchle, J. Phys. Chem. 100, 6927 (1996).
[CrossRef]

Phys. Rev. Lett. (1)

K. Clays and A. Persoons, Phys. Rev. Lett. 66, 2980 (1991).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

K. Clays and A. Persoons, Rev. Sci. Instrum. 63, 3285 (1992).
[CrossRef]

G. Olbrechts, R. Strobbe, K. Clays, and A. Persoons, Rev. Sci. Instrum. 69, 2233 (1998).
[CrossRef]

Trends Chem. Phys. (1)

R. A. Huijts, J. N. Louwen, and L. W. Jenneskens, Trends Chem. Phys. 2, 39 (1992).

Other (2)

K. Clays, A. Persoons, and L. De Maeyer, in Modern Nonlinear Optics, M. Evans and S. Kielich, eds. (Wiley, New York, 1994), Vol. 3, p. 455.

E. Hendrickx, C. Dehu, K. Clays, J.-L. Brédas, and A. Persoons, in Polymers for Second-Order Nonlinear Optics, Vol. 601 of American Chemical Society Symposium Series (American Chemical Society, Washington, D.C., 1995), p. 82.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Demodulation of the apparent hyperpolarizability as a function of the modulation frequency for (a) DANS and (b) MONS. The (solid) fitted curves show fluorescence-free hyperpolarizability values of 110±10×10-30 esu for DANS and 16±4×10-30 esu for MONS.

Fig. 2
Fig. 2

Demodulation of the apparent hyperpolarizability value as a function of modulation frequency for MO. The (solid) fitted curve shows a fluorescence-free hyperpolarizability value of 140±10×10-30 esu for the MO chromophore.

Metrics