Abstract

Single resonant parametric oscillators including intracavity quadratic and cubic nonlinearities are described in the mean-field limit with a cubic and quintic complex Ginzburg–Landau equation. Following our model, simple design criteria are derived for the generation of solitonlike pulses and beams for singly resonant optical parametric oscillators.

© 1999 Optical Society of America

Full Article  |  PDF Article

Corrections

Pey-Schuan Jian, William E. Torruellas, Marc Haelterman, Stefano Trillo, Ulf Peschel, and Falk Lederer, "Solitons of singly resonant optical parametric oscillators:?errata," Opt. Lett. 24, 856-856 (1999)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-24-12-856

References

  • View by:
  • |
  • |
  • |

  1. J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 1085 (1995)G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Lett. 20, 1562 (1995)G. Cerullo, M. Nisoli, and S. de Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
    [CrossRef] [PubMed]
  2. S. Longhi, Opt. Lett. 23, 346 (1998)K. Staliunas, Phys. Rev. Lett. 81, 81 (1998)G. L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev. A 49, 2028 (1994)S. Trillo and M. Haelterman, Opt. Lett. 23, 1514 (1998)U. Peschel, C. Etrich, and F. Lederer, Opt. Lett. 23, 500 (1998).
    [CrossRef] [PubMed]
  3. O. Bang, J. Opt. Soc. Am. B 14, 51 (1997).
    [CrossRef]
  4. F. Hache, A. Zeboulon, G. Gallot, and G. M. Gale, Opt. Lett. 20, 1556 (1995).
    [CrossRef] [PubMed]
  5. D. T. Reid, J. M. Dudley, M. Ebrahimzadeh, and W. Sibbett, Opt. Lett. 19, 825 (1994).
    [CrossRef] [PubMed]
  6. H. Haus, J. Appl. Phys. 46, 3049 (1975).
    [CrossRef]
  7. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).
  8. N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
    [CrossRef]
  9. A. DeRossi, G. Assanto, S. Trillo, and W. E. Torruellas, Opt. Commun. 150, 390 (1998).
    [CrossRef]
  10. J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, J. Opt. Soc. Am. B 13, 1439 (1996).
    [CrossRef]

1998 (2)

1997 (1)

1996 (1)

1995 (2)

J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 1085 (1995)G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Lett. 20, 1562 (1995)G. Cerullo, M. Nisoli, and S. de Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef] [PubMed]

F. Hache, A. Zeboulon, G. Gallot, and G. M. Gale, Opt. Lett. 20, 1556 (1995).
[CrossRef] [PubMed]

1994 (1)

1977 (1)

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

1975 (1)

H. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Afanasjev, V. V.

Akhmediev, N.

N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).

Akhmediev, N. N.

Ankiewicz, A.

N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).

Assanto, G.

A. DeRossi, G. Assanto, S. Trillo, and W. E. Torruellas, Opt. Commun. 150, 390 (1998).
[CrossRef]

Bang, O.

DeRossi, A.

A. DeRossi, G. Assanto, S. Trillo, and W. E. Torruellas, Opt. Commun. 150, 390 (1998).
[CrossRef]

Dudley, J. M.

Ebrahimzadeh, M.

Gale, G. M.

Gallot, G.

Hache, F.

Haus, H.

H. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

Kafka, J. D.

J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 1085 (1995)G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Lett. 20, 1562 (1995)G. Cerullo, M. Nisoli, and S. de Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef] [PubMed]

Longhi, S.

Pereira, N. R.

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

Pieterse, J. W.

J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 1085 (1995)G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Lett. 20, 1562 (1995)G. Cerullo, M. Nisoli, and S. de Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef] [PubMed]

Reid, D. T.

Sibbett, W.

Soto-Crespo, J. M.

Stenflo, L.

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

Torruellas, W. E.

A. DeRossi, G. Assanto, S. Trillo, and W. E. Torruellas, Opt. Commun. 150, 390 (1998).
[CrossRef]

Trillo, S.

A. DeRossi, G. Assanto, S. Trillo, and W. E. Torruellas, Opt. Commun. 150, 390 (1998).
[CrossRef]

Watts, M. L.

J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 1085 (1995)G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Lett. 20, 1562 (1995)G. Cerullo, M. Nisoli, and S. de Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef] [PubMed]

Zeboulon, A.

J. Appl. Phys. (1)

H. Haus, J. Appl. Phys. 46, 3049 (1975).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. D. Kafka, M. L. Watts, and J. W. Pieterse, J. Opt. Soc. Am. B 12, 1085 (1995)G. M. Gale, M. Cavallari, T. J. Driscoll, and F. Hache, Opt. Lett. 20, 1562 (1995)G. Cerullo, M. Nisoli, and S. de Silvestri, Appl. Phys. Lett. 71, 3616 (1997).
[CrossRef] [PubMed]

O. Bang, J. Opt. Soc. Am. B 14, 51 (1997).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, and V. V. Afanasjev, J. Opt. Soc. Am. B 13, 1439 (1996).
[CrossRef]

Opt. Commun. (1)

A. DeRossi, G. Assanto, S. Trillo, and W. E. Torruellas, Opt. Commun. 150, 390 (1998).
[CrossRef]

Opt. Lett. (3)

Phys. Fluids (1)

N. R. Pereira and L. Stenflo, Phys. Fluids 20, 1733 (1977).
[CrossRef]

Other (1)

N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman & Hall, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of a single resonant OPO.

Fig. 2
Fig. 2

Evolution of the signal wave as a function of the number of round trips for a LBO crystal with deff=1.25 pm/V and n2=3×10-20 m2/W. Inset, the output intensity pulse profile with a sech2 dependence in addition to phase Ph and chirp Ch across the pulse.

Fig. 3
Fig. 3

Solid curves, predictions from the soliton solution of the cubic Ginzburg–Landau model. Circles, results of the infinite map. Dotted curves, results of a fit to the full widths of the pulses from the infinite map by the cubic–quintic model. We multiplied the quintic term by a factor of 0.625, which phenomenologically includes the effects of higher-order saturation that are present at high intensities.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

iEsz+ksωEst-122ksω22Est2=-ΓsEpEi*,iEiz+kiωEist-122kiω22Eit2=-ΓiEpEs*,iEpz+kpωEpt-122kpω22Ept2=-ΓpEsEi*,
iEsz-122ksω22Est2+πλscϵ0nsn2Es2Es=ig-α-sEs2+qEs4Es,
a2t=2f1f2f1+f2+f1-f2cosh2qf1f2dcϵ0nsn2f1f2t1/2
d=3-9+8ϵ22ϵ,ϵ=-4π3cϵ0λsλiλpL2nsninpαdeff2n2IpIpth,τ2=d-2ksω2αIpIpth-1,Isol=916π2cϵ0nsninpλiλpL21-IpthIpdeff2.

Metrics