Abstract

First experimental results from a direct-view display made from bacteriorhodopsin (BR) are presented. A dielectric mirror in direct contact with the photoactive BR layer forms the core of the BR display. The dielectric layer both decreases the light intensity necessary for writing and protects the observer from transmitted laser light. By illuminating the BR display with a suitably filtered light source from the rear we achieve the result that the information appears to the observer with an intensity contrast of more than 70:1, accompanied by a significant color shift. The combination of both enhances the visibility of and the ability to discern the information significantly. On the BR display the information appears in yellow on a dark purple-red background.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Oesterhelt, C. Bräuchle, and N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
    [Crossref] [PubMed]
  2. B. S. Wherrett, Synth. Met. 76, 3 (1996).
    [Crossref]
  3. N. Hampp and A. Silber, Pure Appl. Chem. 68, 1361 (1996).
    [Crossref]
  4. R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, Molecular Electronics (Blackwell, Oxford, 1997), p. 439.
  5. R. Thoma, N. Hampp, C. Bräuchle, and D. Oesterhelt, Opt. Lett. 16, 651 (1991).
    [Crossref] [PubMed]
  6. Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, Opt. Lett. 18, 1373 (1993).
    [Crossref]
  7. H. Imam, L. R. Lindvold, and P. S. Ramanujam, Opt. Lett. 20, 225 (1995).
    [Crossref] [PubMed]
  8. K. P. J. Reddy, J. Appl. Phys. 77, 6108 (1995).
    [Crossref]
  9. H. Takei and N. Shimizu, Appl. Opt. 35, 1848 (1996).
    [Crossref] [PubMed]
  10. M. Storrs, D. J. Mehrl, and J. F. Walkup, Appl. Opt. 35, 4632 (1996).
    [Crossref] [PubMed]
  11. L. R. Lindvold and H. Lausen, Proc. SPIE 3013, 202 (1997).
    [Crossref]
  12. J. D. Sánchez-de-la-Lave, D. A. Pommet, and M. A. Fiddy, Opt. Eng. 1, 27 (1998).
    [Crossref]
  13. M. Nakasako, M. Kataoka, and F. Tokunaga, FEBS Lett. 254, 211 (1989).
    [Crossref]
  14. A. Miller and D. Oesterhelt, Biochim. Biophys. Acta 1020, 57 (1990).
    [Crossref]
  15. M. Yoshida, K. Ohno, Y. Takeuchi, and Y. Kagawa, Biochem. Biophys. Res. Commun. 75, 1111 (1977).
    [Crossref] [PubMed]

1998 (1)

J. D. Sánchez-de-la-Lave, D. A. Pommet, and M. A. Fiddy, Opt. Eng. 1, 27 (1998).
[Crossref]

1997 (1)

L. R. Lindvold and H. Lausen, Proc. SPIE 3013, 202 (1997).
[Crossref]

1996 (4)

1995 (2)

1993 (1)

1991 (2)

1990 (1)

A. Miller and D. Oesterhelt, Biochim. Biophys. Acta 1020, 57 (1990).
[Crossref]

1989 (1)

M. Nakasako, M. Kataoka, and F. Tokunaga, FEBS Lett. 254, 211 (1989).
[Crossref]

1977 (1)

M. Yoshida, K. Ohno, Y. Takeuchi, and Y. Kagawa, Biochem. Biophys. Res. Commun. 75, 1111 (1977).
[Crossref] [PubMed]

Birge, R. R.

Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, Opt. Lett. 18, 1373 (1993).
[Crossref]

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, Molecular Electronics (Blackwell, Oxford, 1997), p. 439.

Blumer, R.

Bräuchle, C.

Chen, Z.

Fiddy, M. A.

J. D. Sánchez-de-la-Lave, D. A. Pommet, and M. A. Fiddy, Opt. Eng. 1, 27 (1998).
[Crossref]

Gross, R. B.

Hampp, N.

N. Hampp and A. Silber, Pure Appl. Chem. 68, 1361 (1996).
[Crossref]

D. Oesterhelt, C. Bräuchle, and N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[Crossref] [PubMed]

R. Thoma, N. Hampp, C. Bräuchle, and D. Oesterhelt, Opt. Lett. 16, 651 (1991).
[Crossref] [PubMed]

Imam, H.

Kagawa, Y.

M. Yoshida, K. Ohno, Y. Takeuchi, and Y. Kagawa, Biochem. Biophys. Res. Commun. 75, 1111 (1977).
[Crossref] [PubMed]

Kataoka, M.

M. Nakasako, M. Kataoka, and F. Tokunaga, FEBS Lett. 254, 211 (1989).
[Crossref]

Lausen, H.

L. R. Lindvold and H. Lausen, Proc. SPIE 3013, 202 (1997).
[Crossref]

Lindvold, L. R.

Mehrl, D. J.

Miller, A.

A. Miller and D. Oesterhelt, Biochim. Biophys. Acta 1020, 57 (1990).
[Crossref]

Nakasako, M.

M. Nakasako, M. Kataoka, and F. Tokunaga, FEBS Lett. 254, 211 (1989).
[Crossref]

Oesterhelt, D.

D. Oesterhelt, C. Bräuchle, and N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[Crossref] [PubMed]

R. Thoma, N. Hampp, C. Bräuchle, and D. Oesterhelt, Opt. Lett. 16, 651 (1991).
[Crossref] [PubMed]

A. Miller and D. Oesterhelt, Biochim. Biophys. Acta 1020, 57 (1990).
[Crossref]

Ohno, K.

M. Yoshida, K. Ohno, Y. Takeuchi, and Y. Kagawa, Biochem. Biophys. Res. Commun. 75, 1111 (1977).
[Crossref] [PubMed]

Parsons, B.

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, Molecular Electronics (Blackwell, Oxford, 1997), p. 439.

Pommet, D. A.

J. D. Sánchez-de-la-Lave, D. A. Pommet, and M. A. Fiddy, Opt. Eng. 1, 27 (1998).
[Crossref]

Ramanujam, P. S.

Reddy, K. P. J.

K. P. J. Reddy, J. Appl. Phys. 77, 6108 (1995).
[Crossref]

Sánchez-de-la-Lave, J. D.

J. D. Sánchez-de-la-Lave, D. A. Pommet, and M. A. Fiddy, Opt. Eng. 1, 27 (1998).
[Crossref]

Shimizu, N.

Silber, A.

N. Hampp and A. Silber, Pure Appl. Chem. 68, 1361 (1996).
[Crossref]

Song, Q. W.

Q. W. Song, C. Zhang, R. Blumer, R. B. Gross, Z. Chen, and R. R. Birge, Opt. Lett. 18, 1373 (1993).
[Crossref]

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, Molecular Electronics (Blackwell, Oxford, 1997), p. 439.

Storrs, M.

Takei, H.

Takeuchi, Y.

M. Yoshida, K. Ohno, Y. Takeuchi, and Y. Kagawa, Biochem. Biophys. Res. Commun. 75, 1111 (1977).
[Crossref] [PubMed]

Tallent, J. R.

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, Molecular Electronics (Blackwell, Oxford, 1997), p. 439.

Thoma, R.

Tokunaga, F.

M. Nakasako, M. Kataoka, and F. Tokunaga, FEBS Lett. 254, 211 (1989).
[Crossref]

Walkup, J. F.

Wherrett, B. S.

B. S. Wherrett, Synth. Met. 76, 3 (1996).
[Crossref]

Yoshida, M.

M. Yoshida, K. Ohno, Y. Takeuchi, and Y. Kagawa, Biochem. Biophys. Res. Commun. 75, 1111 (1977).
[Crossref] [PubMed]

Zhang, C.

Appl. Opt. (2)

Biochem. Biophys. Res. Commun. (1)

M. Yoshida, K. Ohno, Y. Takeuchi, and Y. Kagawa, Biochem. Biophys. Res. Commun. 75, 1111 (1977).
[Crossref] [PubMed]

Biochim. Biophys. Acta (1)

A. Miller and D. Oesterhelt, Biochim. Biophys. Acta 1020, 57 (1990).
[Crossref]

FEBS Lett. (1)

M. Nakasako, M. Kataoka, and F. Tokunaga, FEBS Lett. 254, 211 (1989).
[Crossref]

J. Appl. Phys. (1)

K. P. J. Reddy, J. Appl. Phys. 77, 6108 (1995).
[Crossref]

Opt. Eng. (1)

J. D. Sánchez-de-la-Lave, D. A. Pommet, and M. A. Fiddy, Opt. Eng. 1, 27 (1998).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

L. R. Lindvold and H. Lausen, Proc. SPIE 3013, 202 (1997).
[Crossref]

Pure Appl. Chem. (1)

N. Hampp and A. Silber, Pure Appl. Chem. 68, 1361 (1996).
[Crossref]

Q. Rev. Biophys. (1)

D. Oesterhelt, C. Bräuchle, and N. Hampp, Q. Rev. Biophys. 24, 425 (1991).
[Crossref] [PubMed]

Synth. Met. (1)

B. S. Wherrett, Synth. Met. 76, 3 (1996).
[Crossref]

Other (1)

R. R. Birge, B. Parsons, Q. W. Song, and J. R. Tallent, Molecular Electronics (Blackwell, Oxford, 1997), p. 439.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Simplified photocycle of BR. Only the initial purple B state and the longest-living intermediate M are considered. The M state returns to the B state either thermally or after excitation with blue light.

Fig. 2
Fig. 2

Optical setup of the direct-view display based on BR. The expanded laser beam (530  nm) is used for writing the information into the BR display. Light from a tungsten lamp, filtered through a BG18 glass filter, is used as observation light and is coupled to the light path by means of a semitransparent mirror.

Fig. 3
Fig. 3

Spectral transmittance characteristics of the BR display. A, Transmission of the unbleached (solid curve) and bleached (dotted line) BR layers mounted upon the dielectric layer and the spectra of the BG18 filtered light used for observation (gray region). B, Transmission of the BR display in its unbleached off state (solid curve) and its bleached on state (dotted curve).

Fig. 4
Fig. 4

Photo taken from a BR direct-view display of a historical engraving of Marburg Castle. The BR display has a diameter of 5.08  cm. The pattern appears in yellow on a deep purple-red background. First the engraving was photographed, and then the black-and-white slide was used as the pattern in the setup shown in Fig.  1.

Fig. 5
Fig. 5

Separation on the on light spectrum of the BR display (see Fig.  3B) into the blue (dashed line), green, and red components of human visual perception. Only the green and red contributions show a major change from values close to zero to the values shown during the off and on transition. The blue component is very small in the off as well as in the on state.

Fig. 6
Fig. 6

Color change of the BR display when it is switched from off to on, shown as a CIE chromaticity diagram. The vector points from the purple-red off state, i.e., the background, to the yellow on state, which corresponds to the color of the displayed image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R=ImaxImin,K=Imax-IminImax+Imin.

Metrics